It is generally accepted that carnosine (β-alanyl-L-histidine) content is higher in glycolytic than in oxidative muscle fibres, but the underlying mechanisms responsible for this difference remain to be elucidated. A first study to better understand potential mechanisms involved was undertaken (1) to determine whether differences in the expression of carnosine-related enzymes (CARNS1, CNDP2) and transporters (SLC6A6, SLC15A3, SLC15A4, SLC36A1) exist between oxidative and glycolytic myofibres and (2) to study the effect of carnosine on myoblast proliferative growth and on carnosine-related gene expression in cultured myoblasts isolated from glycolytic and oxidative muscles. Immunohistochemistry analyses were conducted to determine the cellular localization of carnosine-related proteins. Laser-capture microdissection and qPCR analyses were performed to measure the expression of carnosine-related genes in different myofibres isolated from the longissimus dorsi muscle of ten crossbred pigs. Myogenic cells originating from glycolytic and oxidative muscles were cultured to assess the effect of carnosine (0, 10, 25 and 50 mM) on their proliferative growth and on carnosine-related gene expression. The mRNA abundance of CNDP2 and of the studied carnosine transporters was higher in oxidative than in glycolytic myofibres. Since carnosine synthase (CARNS1) mRNA abundance was not affected by either the fibre type or the addition of carnosine to myoblasts, its transcriptional regulation would not be the main process by which carnosine content differences are determined in oxidative and glycolytic muscles. The addition of carnosine to myoblasts leading to a dose-dependent increase in SLC15A3 transcripts, however, suggests a role for this transporter in carnosine uptake and/or efflux to maintain cellular homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313551PMC
http://dx.doi.org/10.1007/s00418-023-02193-6DOI Listing

Publication Analysis

Top Keywords

expression carnosine-related
12
glycolytic oxidative
12
oxidative glycolytic
12
carnosine
10
carnosine-related genes
8
glycolytic myofibres
8
proliferative growth
8
growth carnosine-related
8
carnosine-related gene
8
gene expression
8

Similar Publications

Backyard poultry farming contributes to food security, nutrition, and the regular income of rural farmers in India. Their products have a niche market here and fetch higher prices than those of commercial poultry. Improved varieties are being developed to overcome the slow growth, late sexual maturity, and low production of indigenous breeds, while retaining their positive attributes.

View Article and Find Full Text PDF

It is generally accepted that carnosine (β-alanyl-L-histidine) content is higher in glycolytic than in oxidative muscle fibres, but the underlying mechanisms responsible for this difference remain to be elucidated. A first study to better understand potential mechanisms involved was undertaken (1) to determine whether differences in the expression of carnosine-related enzymes (CARNS1, CNDP2) and transporters (SLC6A6, SLC15A3, SLC15A4, SLC36A1) exist between oxidative and glycolytic myofibres and (2) to study the effect of carnosine on myoblast proliferative growth and on carnosine-related gene expression in cultured myoblasts isolated from glycolytic and oxidative muscles. Immunohistochemistry analyses were conducted to determine the cellular localization of carnosine-related proteins.

View Article and Find Full Text PDF

Influences of Beta-Alanine and l-Histidine Supplementation on Growth Performance, Meat Quality, Carnosine Content, and mRNA Expression of Carnosine-Related Enzymes in Broilers.

Animals (Basel)

July 2021

Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

The current study investigated the effect of dietary l-histidine and beta-alanine supplementation on growth performance, meat quality, carnosine content, and gene expression of carnosine-related enzymes in broilers. A two-factor design was adopted in this study. A total of 640 1-day-old male broilers were assigned to eight treatments with factorial arrangement containing four levels of l-histidine (0, 650, 1300, or 1950 mg/kg) and two levels of beta-alanine (0 or 1200 mg/kg) supplementation; 0 mg/kg histidine and/or 0 mg/kg were treated as control groups.

View Article and Find Full Text PDF

This study aimed to investigate the carnosine content and ATP-grasp domain-containing protein 1 () gene expression and their relationship with breast meat of Black Chinese (BC), KU-Phuparn (KP), Pradu Hang Dam (PD), and Black Chinese × Pradu Hang Dam (Sri Mok: SM) to aid in the selection and mating programs for developing functional meat in Thai chicken populations. The results show that the carnosine content in each breed and breed group varied from 428.08 to 553.

View Article and Find Full Text PDF

Effect of dietary β-alanine supplementation on growth performance, meat quality, carnosine content, and gene expression of carnosine-related enzymes in broilers.

Poult Sci

April 2018

Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

The objective of the current study was to investigate the effect of dietary β-alanine supplementation on growth performance, meat quality, antioxidant ability, carnosine content, and gene expression of carnosine-related enzymes in broiler chicks. We randomly assigned 540 1-day-old Arbor Acres broilers to 5 dietary treatments supplemented with 0 (control group), 250, 500, 1,000, or 2,000 mg/kg of β-alanine (mg β-alanine per kg feed). Each treatment included 6 replicates of 18 birds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!