A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Triazophos-induced Respiratory and Behavioral Effects and Development of Adverse Outcome Pathway (AOP) for short-term Exposed Freshwater Snail, Bellamya Bengalensis. | LitMetric

The physiological effects of triazophos were examined using respiratory and behavioral endpoints in Bellamya bengalensis under a 96-hour acute exposure regime. Physiological manifestation of respiratory stress was measured using the rate of oxygen consumption while behavioral toxicity was measured using crawling reflexes, touch response, and mucus production. The threshold effect values for LOEC (Lowest Observed Effect Concentration), NOEC (No Observed Effect Concentration), and MATC (Maximum Acceptable Toxicant Concentration) at 96 h were 0.40, 0.60, and 0.075 mg/l, respectively. Definitive 96 h acute exposures for both respiratory and behavioral endpoints tests were determined using a control group and concentrations ranging from 0.40 to 1.60 mg/l monitored for 24, 48, 72, and 96 h. Test organisms irrespective of exposure concentration demonstrated an initial rise in oxygen consumption rate after 24 h, followed by a progressive decrease in toxicant concentration and exposure period. The in silico structural analysis presents triazophos as having an electrophilic toxic structure similar to choline esterase inhibitors, and also capable of inducing oxidative stress. The AOP highlighted neurotoxicity and oxidative stress as plausible pathways of triazophos toxicity in mollusk species.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00128-023-03734-4DOI Listing

Publication Analysis

Top Keywords

respiratory behavioral
12
bellamya bengalensis
8
behavioral endpoints
8
oxygen consumption
8
observed concentration
8
toxicant concentration
8
oxidative stress
8
concentration
5
triazophos-induced respiratory
4
behavioral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!