NaMgScF (NMSF) was experimentally obtained for the first time by combining hydrothermal and high-temperature solid-state reactions. X-ray powder diffraction (XRD) combined with Rietveld refinement confirms that NMSF is crystallized in the space group with the cell parameters = 10.40860(18), = 7.32804(12) and = 7.52879(11) Å, = = = 90° and = 574.256(24) Å. Through doping with Tb or Eu ions, downshifting yellow-green or red emission could be achieved in NMSF-based phosphors, respectively. Upconversion emission could also be designed by doping with Yb-Er, Yb-Tm, Yb-Ho or Er. Moreover, the NMSF:Er phosphor exhibited green upconversion emission upon excitation at 980 nm, and it exhibited red emission upon excitation at 1532 nm. Finally, recognizable patterns were obtained under excitation at 254, 365 and 980 nm, indicating that the as-prepared phosphors can be applied to multicolor anti-counterfeiting. Moreover, our synthesis strategy opens up new avenues for the synthesis of novel fluorides.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3dt00746dDOI Listing

Publication Analysis

Top Keywords

multicolor anti-counterfeiting
8
red emission
8
upconversion emission
8
emission excitation
8
lanthanide-doped namgscf
4
namgscf exhibiting
4
exhibiting downshifting
4
downshifting upconversion
4
upconversion emissions
4
emissions multicolor
4

Similar Publications

Superior Multimodal Luminescence in a Stable Single-Host Nanomaterial with Large-Scale Synthesis for High-Level Anti-Counterfeiting and Encryption.

Adv Sci (Weinh)

January 2025

Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China.

Multimode luminescent materials exhibit tunable photon emissions under different excitation or stimuli channels, endowing them high encoding capacity and confidentiality for anti-counterfeiting and encryption. Achieving multimode luminescence into a stable single material presents a promising but remains a challenge. Here, the downshifting/upconversion emissions, color-tuning persistent luminescence (PersL), temperature-dependent multi-color emissions, and hydrochromism are integrated into Er ions doped CsNaYbCl nanocrystals (NCs) by leveraging shallow defect levels and directed energy migration.

View Article and Find Full Text PDF

Developing single-particle nanocomposite with aqueous-phase orthogonal multicolor phosphorescence or multimodal luminescence holds great significance for optical coding, anti-counterfeiting encryption, bioimaging, and biosensing. However, it faces challenges such as a limited range of emission wavelengths and difficulties in controlling the synthesis process. In this work, a conjugate structure manipulation integrated luminophor confinement strategy is proposed to prepare carbon dots@upconversion nanoparticles (CDs@UCNPs) featuring aqueous-phase orthogonal multicolor room-temperature phosphorescence-upconversion luminescence (RTP-UCL) through wet-chemical synthetic methods.

View Article and Find Full Text PDF

Elastomers are of great significance in developing smart materials for information encryption, and their unique self-healing and highly flexible properties provide innovative solutions to enhance security and anti-counterfeiting effectiveness. However, challenges remain in the multifunctional combination of mechanical properties, self-healing, degradability, and luminescence of these materials. Herein, a chemodynamic covalent adaptable network (CCAN)-induced robust, self-healing, and degradable fluorescent elastomer is proposed.

View Article and Find Full Text PDF

High Defect Tolerance Breaking the Design Limitation of Full-Spectrum Multimodal Luminescence Materials.

Adv Mater

December 2024

Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin, 300071, China.

With the development of optical anti-counterfeiting and the increasing demand for high-level information encryption, multimodal luminescence (MML) materials attract much attention. However, the discovery of these multifunctional materials is very accidental, and the versatile host suitable for developing such materials remains unclear. Here, a grossite-type fast ionic conductor CaGaO, characterized by layered and tunnel structure with excellent defect tolerance, is found to meet the needs of various luminescent processes.

View Article and Find Full Text PDF

Environmentally friendly natural polymer-based room temperature phosphorescence (RTP) materials exhibit promising applications in anti-counterfeiting and information encryption. However, the construction of natural polymer-based RTP materials with multicolor long afterglow and even persistent near-infrared (NIR) luminescence remains a tough challenge. Here, starch (S)-based ultralong RTP materials with wide color-tunability, persistent NIR luminescence are conveniently prepared through Förster resonance energy transfer (FRET) strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!