Wound healing (WH) is a complex and dynamic process that comprises of a series of molecular and cellular events that occur after tissue injury. The injuries of the maxillofacial and oral region caused by trauma or surgery result in undesirable WH such as delayed wound closure and formation of scar tissue. Skin tissue engineering (TE)/regeneration is an emerging approach toward faster, superior, and more effective resolution of clinically significant wounds effectively. A multitude of TE principles approaches are being put to action for the fabrication of hydrogels, electrospun sheets, 3D scaffolds, and thin films that can be used as wound dressings materials, sutures, or skin substitutes. Thin films are advantageous over other materials owing to their flexibility, ability to provide a barrier against external contamination, easy gaseous exchange, and easy monitoring of wounds. This review focuses on wound-dressing films and their significance and discusses various fabrication techniques. In addition, we explore various natural biopolymers that can be used for fabrication of skin TE materials. Impact Statement In this review article, critical evaluations of natural polymers used in skin regeneration were discussed. Further, the fabrication technology of the 2D and 3D material in wound healing were discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.TEC.2023.0070 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!