Recently, DNA-assembly nanoparticles based on DNA-metal ion interactions are emerging as new building blocks for drug delivery and metal nanostructure synthesis. However, the surface modification of DNA-assembly nanoparticles using functional biomolecules that can identify specific targets has rarely been explored. In this study, we developed a new immobilization chemical strategy to efficiently functionalize the barcode DNA-assembly nanoparticles (bcDNA NPs) with thiolated probe DNA (pDNA) for synthesizing pDNA-functionalized bcDNA NPs (pDNA-bcDNA NPs). We used them as nanoprobes to successfully demonstrate the sensitive and selective detection of multiple DNA targets. Importantly, Au ions played an essential role as anchoring sites via their conjugation with both thiolated pDNA and bcDNA NPs. In addition, we could reversibly and rapidly disassemble the pDNA-bcDNA NPs into the initial bcDNA strands with a recovery rate of 91%; this process significantly amplified the signal by releasing a million bcDNA strands, which enabled DNA quantification from a single pDNA-bcDNA NP. The Au concentration, pH, and surface passivation conditions were carefully investigated to maximize the pDNA loading to 8500 strands/bcDNA NP. The limit of detection was determined to be 221 fM, which is the most sensitive among the absorbance-based methods without polymerase chain reaction, hybridization chain reactions, catalytic hairpin assembly, and other reactions involving enzymes and catalysts. The reversible disassembly of DNA strands and Au ion-mediated conjugation chemistry could be extended for the detection of other types of targets, such as proteins, metal ions, and small molecules, using other organic functionalities that are or can be thiolated, including polypeptides, aptamers, and antibodies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.bioconjchem.3c00143DOI Listing

Publication Analysis

Top Keywords

dna-assembly nanoparticles
16
bcdna nps
12
reversible disassembly
8
dna targets
8
pdna-bcdna nps
8
bcdna strands
8
dna
5
bcdna
5
nps
5
surface functionalization
4

Similar Publications

Controlling the self-assembly of cellulose nanocrystals (CNCs) requires precise control over their surface chemistry for the directed assembly of advanced nanocomposites with tailored mechanical, thermal, and optical properties. In this work, in contrast to traditional chemistries, we conducted highly selective click-chemistry functionalization of cellulose nanocrystals with complementary DNA strands via a three-step hybridization-guided process. By grafting terminally functionalized oligonucleotides through copper-free click chemistry, we successfully facilitated the assembly of brushlike DNA-modified CNCs into bundled nanostructures with distinct chiral optical dichroism in thin films.

View Article and Find Full Text PDF

An electrochemical biosensor to assay Trop-2 of breast cancer cells fabricated by methylene blue-assisted assembly of DNA nanoparticles.

Biosens Bioelectron

February 2024

State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China. Electronic address:

Human trophoblast surface cell antigen 2 (Trop-2) on the tumor cell membrane can not only serve as the target for chemotherapy drugs, but also as a biomarker for typing and prognosis of breast cancer; however, assay of Trop-2 is seriously hampered due to the limitations of available tool. Herein, we have designed and fabricated an electrochemical biosensor for the assay of Trop-2 based on methylene blue (MB)-assisted assembly of DNA nanocomposite particles (DNPs). Specially, the recognition between Trop-2 and its aptamer may activate the primer exchange reaction (PER) on an electrode surface to produce long single-strand DNA (ssDNA) which can be self-assembled into DNPs by electrostatic interaction between negative charged DNA and positive charged and electro-active MB molecules which can also be used to give electrochemical signal.

View Article and Find Full Text PDF

Nano-impact electrochemistry (NIE) enables simple, rapid, and high-throughput biocoupling and biomolecular recognition. However, the low effective collision frequency limits the sensitivity. In this study, we propose a novel NIE sensing strategy amplified by the CRISPR-responsive DNA hydrogel and cascade DNA assembly.

View Article and Find Full Text PDF

DNA Assembly of Plasmonic Nanostructures Enables SERS-Based MicroRNA Detection and Tumor Photoacoustic Imaging.

Anal Chem

August 2023

Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.

Controllable self-assembly of the DNA-linked gold nanoparticle (AuNP) architecture for biomedical applications remains a key challenge. Here, we describe the use of the programmed DNA tetrahedral structure to control the assembly of three different types of AuNPs (∼20, 10, and 5 nm) by organizing them into defined positioning and arrangement. A DNA-assembled "core-satellite" architecture is built by DNA sequencing where satellite AuNPs (10 and 5 nm) surround a central core AuNP (20 nm).

View Article and Find Full Text PDF

Recently, DNA-assembly nanoparticles based on DNA-metal ion interactions are emerging as new building blocks for drug delivery and metal nanostructure synthesis. However, the surface modification of DNA-assembly nanoparticles using functional biomolecules that can identify specific targets has rarely been explored. In this study, we developed a new immobilization chemical strategy to efficiently functionalize the barcode DNA-assembly nanoparticles (bcDNA NPs) with thiolated probe DNA (pDNA) for synthesizing pDNA-functionalized bcDNA NPs (pDNA-bcDNA NPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!