Evolutionary morphology of sperm in pholcid spiders (Pholcidae, Synspermiata).

BMC Zool

Zoologisches Institut und Museum, Universität Greifswald, Loitzer Straße 26, Greifswald, 17489, Germany.

Published: September 2022

Background: Pholcidae represent one of the largest and most diverse spider families and have been subject to various studies regarding behavior and reproductive biology. In contrast to the solid knowledge on phylogeny and general reproductive morphology, the primary male reproductive system is strongly understudied, as it has been addressed only for few species. Those studies however suggested a high diversity of sperm and seminal secretions across the family. To address this disparity and reconstruct the evolution of sperm traits, we investigate the primary male reproductive system of pholcid spiders by means of light, X-ray, and transmission electron microscopy using a comprehensive taxon sampling with 46 species from 33 genera, representing all five subfamilies.

Results: Our data show a high disparity of sperm morphology and seminal secretions within pholcids. We document several sperm characters that are unique for pholcids, such as a helical band (Pholcinae) or a lamellate posterior centriolar adjunct material (Modisiminae). Character mapping revealed several putative synapomorphies for individual taxa. With regard to sperm transfer forms, we found that synspermia occur only in the subfamily Ninetinae, whereas the other subfamilies have cleistospermia. In several species with cleistospermia, we demonstrate that spermatids remain fused until late stages of spermiogenesis before ultimately separating shortly before the coiling process. Additionally, we explored the previously hypothesized correlation between sperm size and minimum diameter of the spermophor in the male palpal organ. We show that synspermia differ strongly in size whereas cleistospermia are rather uniform, but neither transfer form is positively correlated with the diameter of the spermophor.

Conclusions: Our data revealed a dynamic evolution of sperm characters, with convergences across all subfamilies and a high level of homoplasy. The present diversity can be related to subfamily level and allows for assignments of specific subtypes of spermatozoa. Our observations support the idea that Ninetinae are an ancestral clade within Pholcidae that have retained synspermia and that synspermia represent the ancestral sperm transfer form of Pholcidae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10127419PMC
http://dx.doi.org/10.1186/s40850-022-00148-3DOI Listing

Publication Analysis

Top Keywords

sperm
9
pholcid spiders
8
primary male
8
male reproductive
8
reproductive system
8
seminal secretions
8
evolution sperm
8
sperm characters
8
sperm transfer
8
transfer form
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!