Transition metal chalcogenide quantum dots (QDs), especially MoS QDs, are an emerging class of novel optical probes for versatile bioanalytical applications owing to their distinct physicochemical properties. However, the reasonable use of these QDs for biological imaging has been largely restricted due to the challenge of controllable surface functionalization. In this work, we report a new strategy to engineer the surface of MoS QDs by taking advantage of cyclodextrin (CD)-based host-guest chemistry. The prepared β-CD-modified QDs (β-CD-MoS QDs) exhibit enhanced fluorescence properties, excellent biocompatibility, and good stability, making them promising as novel optical probes for bioimaging. Cellular imaging experiments revealed that these β-CD-MoS QDs can enter living cells through multiple internalization pathways, which differs significantly from pristine QDs. Particularly, we observed that the intracellular accumulation of MoS QDs in lipid droplets was enhanced owing to the specific binding of β-CD to cholesterol, which was then harnessed for monitoring the lipid metabolism in living cells via fluorescence imaging. Furthermore, we also demonstrated the potential use of β-CD-MoS QDs for targeted cell imaging and microplate-based cell recognition, which can be easily achieved via bioconjugation with functional motifs (e.g., folate acid) through host-guest chemistry. Altogether, these results illustrate the great potential of engineering the surface of MoS QDs and other analogous materials via CD-based host-guest chemistry for advancing their cell imaging applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.3c01077 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Xihua University, College of Food and Bioengineering, CHINA.
Protein post-translational modifications (PTMs) play crucial roles in various cellular processes. Despite their significance, only a few PTMs have been extensively studied at the proteome level, primarily due to the scarcity of reliable, convenient, and low-cost sensing methods. Here, we present a straightforward and effective strategy for detecting PTMs on short peptides through host-guest interaction-assisted nanopore sensing.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.
Luminescent chiral metal-organic frameworks (CMOFs) are promising candidates for the enantioselective sensing of important chiral molecules. Herein, we report the synthesis and characterization of Zn and Cd CMOFs based on 1,1'-bi-2-naphthol (BINOL)-derived 3,3',6,6'-tetra(benzoic acids), H-OEt and H-OH. Four CMOFs, -OEt, -OH, -OEt, and -OH, based on these ligands were crystallographically characterized.
View Article and Find Full Text PDFChemistry
January 2025
State Key Laboratory of NBC Protection for Civilian, State Key Laboratory of NBC Protection for Civilian,, Beijing, CHINA.
The root ducts play an important role in the plant's transport of nutrients from the soil. Based on the selective transport characteristics of plant roots, amino pillar[6]arene bionic porous root sub-nano channel membrane were constructed to remove Imazamox. Imazamox (IM) is an effective imidazolinone herbicide frequently utilized in soybean fields to control a wide range of annual grasses and broad-leaved weeds.
View Article and Find Full Text PDFNat Commun
January 2025
College of Chemistry, Nankai University, Tianjin, China.
Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.
View Article and Find Full Text PDFPharmaceutics
January 2025
Integrative Health and Environmental Analysis Research Laboratory, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.
Cyclodextrins can serve as carriers for various payloads, utilizing their capacity to form unique host-guest inclusion complexes within their cavity and their versatile surface functionalization. Recently, cationic cyclodextrins have gained considerable attention, as they can improve drug permeability across negatively charged cell membranes and efficiently condense negatively charged nucleic acid due to electrostatic interactions. This review focuses on state-of-the-art and recent advances in the construction of cationic cyclodextrin-based delivery systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!