Purpose: The study was to develop a Gd-EOB-DTPA-enhanced MRI radiomics model for differentiating atypical intrahepatic mass-forming cholangiocarcinoma (aIMCC) from poorly differentiated hepatocellular carcinoma (pHCC).

Materials And Methods: A total of 134 patients (51 aIMCC and 83 pHCC) who underwent Gadoxetic acid-enhanced MRI between March 2016 and March 2022 were enrolled in this study and then randomly assigned to the training and validation cohorts by 7:3 (93 patients and 41 patients, respectively). The radiomics features were extracted from the hepatobiliary phase of Gadoxetic acid-enhanced MRI. In the training cohort, the SelectKBest and the least absolute shrinkage and selection operator (LASSO) were used to select the radiomics features. The clinical, radiomics, and clinical-radiomics model were established using four machine learning algorithms. The performance of the model was evaluated by the receiver operating characteristic (ROC) curve. Comparison of the radiomics and clinical-radiomics model was done by the Delong test. The clinical usefulness of the model was evaluated using decision curve analysis (DCA).

Results: In 1132 extracted radiomic features, 15 were selected to develop radiomics signature. For identifying aIMCC and pHCC, the radiomics model constructed by random forest algorithm showed the high performance (AUC = 0.90) in the training cohort. The performance of the clinical-radiomics model (AUC = 0.89) was not significantly different (P = 0.88) from that of the radiomics model constructed by random forest algorithm (AUC = 0.86) in the validation cohort. DCA demonstrated that the clinical-radiomics model constructed by random forest algorithm had a high net clinical benefit.

Conclusion: The clinical-radiomics model is an effective tool to distinguish aIMCC from pHCC and may provide additional value for the development of treatment plans.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00261-023-03870-9DOI Listing

Publication Analysis

Top Keywords

clinical-radiomics model
20
gadoxetic acid-enhanced
12
acid-enhanced mri
12
radiomics model
12
aimcc phcc
12
model constructed
12
constructed random
12
random forest
12
forest algorithm
12
model
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!