Purpose: The study was to develop a Gd-EOB-DTPA-enhanced MRI radiomics model for differentiating atypical intrahepatic mass-forming cholangiocarcinoma (aIMCC) from poorly differentiated hepatocellular carcinoma (pHCC).
Materials And Methods: A total of 134 patients (51 aIMCC and 83 pHCC) who underwent Gadoxetic acid-enhanced MRI between March 2016 and March 2022 were enrolled in this study and then randomly assigned to the training and validation cohorts by 7:3 (93 patients and 41 patients, respectively). The radiomics features were extracted from the hepatobiliary phase of Gadoxetic acid-enhanced MRI. In the training cohort, the SelectKBest and the least absolute shrinkage and selection operator (LASSO) were used to select the radiomics features. The clinical, radiomics, and clinical-radiomics model were established using four machine learning algorithms. The performance of the model was evaluated by the receiver operating characteristic (ROC) curve. Comparison of the radiomics and clinical-radiomics model was done by the Delong test. The clinical usefulness of the model was evaluated using decision curve analysis (DCA).
Results: In 1132 extracted radiomic features, 15 were selected to develop radiomics signature. For identifying aIMCC and pHCC, the radiomics model constructed by random forest algorithm showed the high performance (AUC = 0.90) in the training cohort. The performance of the clinical-radiomics model (AUC = 0.89) was not significantly different (P = 0.88) from that of the radiomics model constructed by random forest algorithm (AUC = 0.86) in the validation cohort. DCA demonstrated that the clinical-radiomics model constructed by random forest algorithm had a high net clinical benefit.
Conclusion: The clinical-radiomics model is an effective tool to distinguish aIMCC from pHCC and may provide additional value for the development of treatment plans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00261-023-03870-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!