Membranes with ultrahigh permeance and practical selectivity could greatly decrease the cost of difficult industrial gas separations, such as CH/N separation. Advanced membranes made from porous materials, such as metal-organic frameworks, can achieve a good gas separation performance, although they are typically formed on support layers or mixed with polymeric matrices, placing limitations on gas permeance. Here an amorphous glass foam, aZIF-62, wherein a, g and f denote amorphous, glass and foam, respectively, was synthesized by a polymer-thermal-decomposition-assisted melting strategy, starting from a crystalline zeolitic imidazolate framework, ZIF-62. The thermal decomposition of incorporated low-molecular-weight polyethyleneimine evolves CO, NH and HO gases, creating a large number and variety of pores. This greatly increases pore interconnectivity but maintains the crystalline ZIF-62 ultramicropores, allowing ultrahigh gas permeance and good selectivity. A self-supported circular aZIF-62 with a thickness of 200-330 µm and area of 8.55 cm was used for membrane separation. The membranes perform well, showing a CH permeance of 30,000-50,000 gas permeance units, approximately two orders of magnitude higher than that of other reported membranes, with good CH/N selectivity (4-6).

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41563-023-01545-wDOI Listing

Publication Analysis

Top Keywords

glass foam
12
gas permeance
8
amorphous glass
8
membranes
5
permeance
5
zif-62 glass
4
foam self-supported
4
self-supported membranes
4
membranes address
4
address ch/n
4

Similar Publications

Versatile and robust transparent polymer film with preprogrammed diffusion and bidirectional irreversible fluorescence for sequential information encryption.

J Colloid Interface Sci

January 2025

Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China. Electronic address:

The materials currently available for information encryption often suffer from low transparency, poor mechanical strength, and a reliance on single decryption conditions, which limits their security and hence application potential. To address these challenges, we developed a transparent, mechanically robust polymer film inspired by the camouflage and communication strategies of the glass squid. In this film, 2,5-dihydroxyterephthalic acid (DHTA) and zinc acetate dihydrate are integrated into a crosslinked polyvinyl alcohol-glutaraldehyde (PVA-GA) matrix to achieve bidirectional irreversible fluorescence and sequential decryption.

View Article and Find Full Text PDF

Niemann-Pick disease (NPD) is an autosomal recessive disease caused by deficient lysosomal enzyme or faulty cholesterol transport. A 9-year-old male patient presented with 6 years of abdominal swelling, previously treated as tuberculosis. He exhibited hepatosplenomegaly, delayed growth, and pancytopenia.

View Article and Find Full Text PDF

This work addresses the structural quantification of multiphase materials, here nanostructured polymer solid precursors and their micro/nano sized foamed counterparts. It is based on a strategy of contrast/edge enhancement, locally adaptive to image data in digital images of materials. The method allows to binarize straightforwardly the structures (the phases) in TEM and SEM images after edge identification, edge choice, and image virtual reconstruction.

View Article and Find Full Text PDF

We conduct experiments on a class of two-dimensional semiwet foams generated through compressing a three-dimensional soap foam between two glass plates. To induce a spatially uniform rupturing process on foam boundaries, an additional plate is heated and placed on top of the unheated plates. For 30 separate foam samples, we record network statistics related to cell side numbers and areas as the foam coarsens over a half-minute.

View Article and Find Full Text PDF

This study analyzes the impact mechanical response of sandwich structures with foam and wood cores through experimental and numerical methods. The aim is to determine whether a sustainable core material, such as cork wood, can serve as a reliable alternative to the commonly used Polystyrene (PS) foam core in sandwich structures. Impact experiments were conducted at varying energy levels using an INSTRON CEAST 9350 drop tower, demonstrating the superiority of sandwich structures compared to single-material alternatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!