Lithospermeae Dumort., a tribe under the subfamily Boraginoidae, is a perennial herb containing approximately 470 species under 26 genera, primarily distributed in temperate and tropical regions. To gain a deeper understanding of the medicinal plants of Lithospermeae and better protect and develop plant medicinal resources, the phytochemistry, pharmacology, and traditional use of Lithospermeae with medicinal value were analyzed. Phylogenetic analysis was carried out based on the internal transcribed spacer sequence. Through spatial analysis and the species distribution model, the spatial distribution pattern of Lithospermeae medicinal plants was analyzed. Meanwhile, the relevant targets and pathways involved in the pharmacological effects of commonly used medicinal plants were predicted using network pharmacology to further explore the genetic origin of Lithospermeae and enrich the pharmaphylogeny of medicinal plants. In this study, the chemical composition, traditional efficacy, and modern pharmacological activity of Lithospermeae were collected for the first time and analyzed in combination with the geographical distribution model, molecular phylogeny, and network pharmacology. Based on our findings, the pharmaphylogeny of Lithospermeae was preliminarily discussed, providing the scientific basis for basic research regarding Lithospermeae. Concurrently, this study explored the relationship between the development of the regional medicinal plant industry and the protection of biodiversity. Furthermore, our findings provide direction and theoretical guidance for the study of the phylogenetic relationships in medicinal plants and the development of Lithospermeae medicinal plant resources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175555PMC
http://dx.doi.org/10.1038/s41598-023-34830-4DOI Listing

Publication Analysis

Top Keywords

medicinal plants
20
lithospermeae medicinal
12
lithospermeae
10
medicinal
9
distribution model
8
network pharmacology
8
medicinal plant
8
plants
5
exploring pharmaphylogeny
4
pharmaphylogeny multiple
4

Similar Publications

Basil, Ocimum basilicum L., is a widely cultivated aromatic herb, prized for its culinary and medicinal uses, predominantly owing to its unique aroma, primarily determined by eugenol for Genovese cultivars or methyl chavicol for Thai cultivars. To date, a comprehensive basil reference genome has been lacking, with only a fragmented draft available.

View Article and Find Full Text PDF

Lycopene is a tetraterpene compound belonging to carotenoids that are widely present in tomatoes and similar products. It is known as a powerful anti-oxidant and a non-provitamin A carotenoid. Lycopene has been found to effectively improve diabetes mellitus and its complications, such as cardiac complications, disorders caused by oxidative stress, and liver and neurological disorders.

View Article and Find Full Text PDF

Comprehensive Analysis of Metabolic Changes in Mice Exposed to Corilagin Based on GC-MS Analysis.

Drug Des Devel Ther

January 2025

Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, People's Republic of China.

Background: Corilagin is widely distributed in various medicinal plants. In recent years, numerous pharmacological activities of Corilagin have been reported, including anti-inflammatory, antiviral, hepatoprotective, anti-tumor, and anti-fibrosis effects. However, there is still a need for systematic metabolomics analysis to further elucidate its mechanisms of action.

View Article and Find Full Text PDF

Biogenic nanoparticles as a promising drug delivery system.

Toxicol Rep

June 2025

Therapeutic Chemistry Department, National Research Center, El Buhouth St., Dokki, Cairo 12622, Egypt.

Nanotechnology has significantly influenced the worldwide medical services sector during the past few decades. Biological collection approaches for nanoparticles are economical, non-toxic, and ecologically benign. This review provides up-to-date information on nanoparticle production processes and biological sources, including algae, plants, bacteria, fungus, actinomycetes, and yeast.

View Article and Find Full Text PDF

extracts mediated synthesis of copper oxide nanoparticles and their biological applications.

Heliyon

January 2025

Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.

With the passage of time there is enormous development in the field of science and technology, however, human health remained the utmost concern. There are different strategies that helps us to treat various diseases but they have adverse reactions on our bodies. Nanobiotechnology is the advanced field consisting of new techniques and fabrication procedures for nanostructures for making drugs more effective against diseases in less time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!