Angiogenic signaling pathways and anti-angiogenic therapy for cancer.

Signal Transduct Target Ther

Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.

Published: May 2023

AI Article Synopsis

  • * Advances in research have identified key biomolecules involved in this process, leading to targeted anti-angiogenic therapies like monoclonal antibodies and tyrosine kinase inhibitors that focus on the VEGF pathway.
  • * Despite their potential, these treatments face challenges such as side effects, drug resistance, and tumor recurrence, highlighting the need for further research and innovative strategies to enhance their effectiveness.

Article Abstract

Angiogenesis, the formation of new blood vessels, is a complex and dynamic process regulated by various pro- and anti-angiogenic molecules, which plays a crucial role in tumor growth, invasion, and metastasis. With the advances in molecular and cellular biology, various biomolecules such as growth factors, chemokines, and adhesion factors involved in tumor angiogenesis has gradually been elucidated. Targeted therapeutic research based on these molecules has driven anti-angiogenic treatment to become a promising strategy in anti-tumor therapy. The most widely used anti-angiogenic agents include monoclonal antibodies and tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factor (VEGF) pathway. However, the clinical benefit of this modality has still been limited due to several defects such as adverse events, acquired drug resistance, tumor recurrence, and lack of validated biomarkers, which impel further research on mechanisms of tumor angiogenesis, the development of multiple drugs and the combination therapy to figure out how to improve the therapeutic efficacy. Here, we broadly summarize various signaling pathways in tumor angiogenesis and discuss the development and current challenges of anti-angiogenic therapy. We also propose several new promising approaches to improve anti-angiogenic efficacy and provide a perspective for the development and research of anti-angiogenic therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175505PMC
http://dx.doi.org/10.1038/s41392-023-01460-1DOI Listing

Publication Analysis

Top Keywords

anti-angiogenic therapy
12
tumor angiogenesis
12
signaling pathways
8
anti-angiogenic
7
therapy
5
tumor
5
angiogenic signaling
4
pathways anti-angiogenic
4
therapy cancer
4
angiogenesis
4

Similar Publications

Treatment advances across the cervical cancer spectrum.

Nat Rev Clin Oncol

January 2025

Department of Obstetrics and Gynecology, University of California, Irvine, Irvine, CA, USA.

Cervical cancer is preventable with screening and vaccination approaches; however, access to these preventative measures is limited both nationally and globally and thus many women will still develop cervical cancer. Novel treatments and practice-changing research have improved cervical cancer outcomes over the past few decades. In this Review, we discuss clinical trials that have refined or redefined the treatment of cervical cancers across the early stage, locally advanced, persistent, recurrent and/or metastatic disease settings.

View Article and Find Full Text PDF

Angiopoietins/Tie2 signaling axis and its role in angiogenesis of psoriasis.

Acta Histochem

January 2025

Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, Shanxi Province 030009, China. Electronic address:

Hyperplasia of microvessels in the superficial dermis is the main pathological feature of psoriasis, and is linked to the pathogenesis of psoriasis. Thus, anti-angiogenic therapy may be effective for psoriasis. Angiopoietins (Angs) are crucial angiogenic factors.

View Article and Find Full Text PDF

A novel quantitative angiogenesis assay based on visualized vascular organoid.

Angiogenesis

January 2025

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China.

Angiogenesis describes the sprouting of blood vessels from existing vasculatures and it plays a pivotal role in disease progress such as diabetes, age-related macular degeneration and cancer. However, the most widely used anti-angiogenic agents targeting vascular endothelial growth factor (VEGF) pathway still lacked of specificity and therapeutic efficacy. To establish a method suitable for high-throughput drug screening and faithfully recapitulate the feature of in vivo angiogenesis, we generated a PECAM1-mRuby3-secNluc; ACTA2-EGFP dual reporter human pluripotent stem cell (hPSC) line and utilizing the cell line to establish a visualized and quantifiable in vitro angiogenesis model with stem cell-derived vascular organoid.

View Article and Find Full Text PDF

Co-delivery of antioxidants and siRNA-VEGF: promising treatment for age-related macular degeneration.

Drug Deliv Transl Res

January 2025

Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, CEP 30510-010, Minas Gerais, Brazil.

Current treatments for retinal disorders are anti-angiogenic agents, laser photocoagulation, and photodynamic therapies. These conventional treatments focus on reducing abnormal blood vessel formation in the retina, which, in a low-oxygen environment, can lead to harmful proliferation of endothelial cells. This results in dysfunctional, leaky blood vessels that cause retinal edema, hemorrhage, and vision loss.

View Article and Find Full Text PDF

A hyaluronic acid nanogels based exosome production factory for tumor photothermal therapy and angiogenesis inhibition.

Int J Biol Macromol

December 2024

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China. Electronic address:

Exosomes as a unique drug delivery system provide a new choice for tumor therapy. However, the in vitro functionalization of exosomes and the process of circulating drug delivery can easily cause exosome degradation and drug loss, thus reducing the efficiency of drug delivery. In this work, based on the endocyto-fusion-exocytosis pathway of exosome formation, a multifunctional hyaluronic acid nanogel loaded with the antiangiogenic drug vatalanib and the near-infrared photothermal agent indocyanine green (ICG) was designed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!