Background: Airway remodeling, which contributes to the clinical course of childhood asthma, occurs due to airway inflammation and is featured by anomalous biological behaviors of airway smooth muscle cells (ASMCs). microRNA (miRNA) plays an essential role in the etiopathogenesis of asthma.

Objective: This research was aimed to characterize miR-506 in asthma and uncover potential regulatory machinery.

Material And Methods: The asthmatic cell model was established by treating ASMCs with transforming growth factor-beta1 (TGF-β1) and assessed by the levels of interleukin (IL)-1β and interferon gamma (IFN-γ). Using real-time quantitative polymerase chain reaction, mRNA expression of miR-506 and polypyrimidine tract-binding protein 1 (PTBP1) was measured. Cell counting kit-8 and Transwell migration tests were used for estimating the capacity of ASMCs to proliferate and migrate. Luciferase reporter assay was used to corroborate whether miR-506 was directly bound to PTBP1. Expression of PTBP1, collagen I and III, and essential proteins of the wingless-related integration (Wnt)/β-catenin pathway (β-catenin, c-MYC and cyclin D1) was accomplished by Western blot analysis. The involvement of Wnt/β-catenin signaling in asthma was confirmed by Wnt signaling pathway inhibitor (IWR-1).

Results: miR-506 was poorly expressed in asthmatic tissues and cell model. Functionally, overexpression of miR-506 reduced aberrant proliferation, migration, inflammation and collagen deposition of ASMCs triggered by TGF-β1. Mechanically, miR-506 directly targeted the 3' untranslated region (3-UTR) of PTBP1 and had a negative regulation on PTBP1 expression. Moreover, overexpression of miR-506 suppressed the induction of Wnt/β-catenin pathway. The administration of IWR-1 further validated negative correlation between miR-506 and the Wnt/β-catenin pathway in asthma.

Conclusion: Our data indicated that targeting miR-506/PTBP1/Wnt/β-catenin axis might point in a helpful direction for treating asthma in children.

Download full-text PDF

Source
http://dx.doi.org/10.15586/aei.v51i3.676DOI Listing

Publication Analysis

Top Keywords

wnt/β-catenin pathway
12
mir-506
9
polypyrimidine tract-binding
8
tract-binding protein
8
wnt/β-catenin signaling
8
signaling pathway
8
cell model
8
mir-506 directly
8
ptbp1 expression
8
overexpression mir-506
8

Similar Publications

Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional endocytic receptor whose dysfunction is linked to developmental dysplasia of the hip, osteoporosis and osteoarthritis. Our work addresses the critical question of how these skeletal pathologies emerge. Here, we show the abundant expression of LRP1 in skeletal progenitor cells at mouse embryonic stage E10.

View Article and Find Full Text PDF

Small molecules are emerging as potential candidates for treating osteoporosis by activating canonical Wnt signaling. These candidates work either by inhibiting DKK-1, sclerostin, SFRP-1, NOTUM, and S1P lyase or by preventing β-catenin degradation through inhibition of GSK-3β, or by targeting Dvl-CXXC5 and axin/β-catenin interactions. While many of these anti-osteoporotic small molecules are in preclinical development, the paucity of FDA-approved small molecules, or promising candidates, that have progressed to clinical trials for treating bone disorders through this mechanism poses a challenge.

View Article and Find Full Text PDF

HNF4α inhibits the malignancy of intrahepatic cholangiocarcinoma by suppressing the Wnt signaling pathway.

Transl Oncol

January 2025

Department of Gastroenterology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China. Electronic address:

Previous studies have demonstrated that intrahepatic cholangiocarcinoma (ICC) may derive from transdifferentiation of hepatocytes, so transforming ICC cells into hepatocytes could be a potential strategy for treating ICC. Hepatocyte nuclear factor 4α (HNF4α), a master transcription factor in the liver, has been demonstrated to induce the differentiation of hepatocellular carcinoma, while its effects on ICC remains unclear. Ivosidenib, an isocitrate dehydrogenase 1 (IDH1) inhibitor, is a novel targeted drug for ICC patients.

View Article and Find Full Text PDF

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

Introduction: Resistance to lenvatinib limits the effectiveness of the targeted treatments for HCC. However, the exact mechanism behind this resistance remains elusive. Current research suggests that circular RNA (circRNA) is pivotal in mediating drug resistance during targeted treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!