First quantitative detection of tomato brown rugose fruit virus in wastewater in Louisiana.

Sci Total Environ

Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan. Electronic address:

Published: August 2023

We investigated the occurrence of tomato brown rugose fruit virus (ToBRFV) at a conventional wastewater treatment plant in Louisiana over a 13-month period, from March 2017 to March 2018. Influent, secondary effluent, and final effluent wastewater samples were collected monthly, and viruses were concentrated by the adsorption-elution method using an electronegative filter, followed by the detection using quantitative polymerase chain reaction. ToBRFV was detected in 10 (77 %) of 13 influent samples, 9 (69 %) of 13 in secondary effluent, and 6 (50 %) of 12 final effluents. The concentrations of ToBRFV in the influent samples ranged from 3.5 to 6.1 log copies/L and it was always higher than those in secondary or final effluents. Wastewater samples showed a high positive ratio of ToBRFV during fall and winter months. The findings highlight that routine monitoring of new viral indicator such as ToBRFV is necessary to understand its environmental distribution and correlation with pathogenic viruses. This is the first study providing quantitative data on the occurrence of ToBRFV in wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.164001DOI Listing

Publication Analysis

Top Keywords

tomato brown
8
brown rugose
8
rugose fruit
8
fruit virus
8
secondary effluent
8
wastewater samples
8
influent samples
8
final effluents
8
tobrfv
6
wastewater
5

Similar Publications

Identification and Characterization of Endophytic Fungus DJE2023 Isolated from Banana ( sp. cv. Dajiao) with Potential for Biocontrol of Banana Fusarium Wilt.

J Fungi (Basel)

December 2024

Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.

This study characterized an endophytic fungus, DJE2023, isolated from healthy banana sucker of the cultivar (cv.) Dajiao. Its potential as a biocontrol agent against banana Fusarium wilt was assessed, aiming to provide a novel candidate strain for the biological control of the devastating disease.

View Article and Find Full Text PDF
Article Synopsis
  • Plant viruses pose significant threats to crops, making quick and accurate detection essential for managing outbreaks and ensuring food security.
  • This study introduces a CRISPR/Cas13a method that can rapidly identify various plant viruses, including the tomato brown rugose fruit virus (ToBRFV), directly from crop RNA.
  • A simple, 15-minute extraction-free protocol was developed, allowing for on-site detection using a portable fluorescent viewer and a mobile phone camera, effectively helping identify ToBRFV in commercial greenhouses.
View Article and Find Full Text PDF

In the green approach for nanoparticle synthesis, biomolecules like phenols, alkaloids, proteins, enzymes, and lipids are the prime reducing and stabilizing agents. In this study, we reported the synthesis of silver nanoparticles (AgNPs) using the aqueous extract of the marine algae Iyengaria stellata (Børgesen) for the first time. The characterization study showed that the developed AgNPs were spherical in shape and their average particle size was 60 nm.

View Article and Find Full Text PDF

Exploring plant virus diversity in wastewater and reclaimed water through metagenomic analysis.

Water Res

February 2025

VISAFELab, Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia Spain. Electronic address:

The use of reclaimed water for agricultural activities is being widely employed to address drought and water scarcity. Nevertheless, the disinfection processes do not consistently facilitate the complete removal of all eukaryotic viruses within these reclaimed waters. Consequently, it may pose a risk not only to humans but also to irrigated plants.

View Article and Find Full Text PDF

Epidemiology of Tomato Brown Rugose Fruit Virus (ToBRFV) in Commercial Greenhouses.

Plant Dis

November 2024

Institut national de la recherche scientifique, Centre Armand Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Quebec, Canada, H7V 1B7;

The tomato brown rugose fruit virus (ToBRFV) poses a considerable threat to tomato production worldwide. Substantial experimental evidence supports the role of infected seeds as a contamination route, but the epidemiologic portrait of the virus has received less attention. This study reports the first survey of ToBRFV prevalence in commercial greenhouses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!