Unconventional myosin VI in the heart: Involvement in cardiac dysfunction progressing with age.

Biochim Biophys Acta Mol Basis Dis

Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland. Electronic address:

Published: August 2023

Hypertrophic cardiomyopathy is the most common cardiovascular disease, which is characterized by structural and functional myocardial abnormalities. It is caused predominantly by autosomal dominant mutations, mainly in genes encoding cardiac sarcomeric proteins, resulting in diverse phenotypical patterns and a heterogenic clinical course. Unconventional myosin VI (MVI) is one of the proteins important for heart function, as it was shown that a point mutation within MYO6 is associated with left ventricular hypertrophy. Previously, we showed that MVI is expressed in the cardiac muscle, where it localizes to the sarcoplasmic reticulum and intercalated discs. Here, we addressed the mechanisms of its involvement in cardiac dysfunction in Snell's waltzer mice (natural MVI knockouts) during heart development. We showed that heart enlargement was already seen in the E14.5 embryos and newborn animals (P0), and was maintained throughout the examined lifespan (up to 12 months). The higher levels of MVI were observed in the hearts of E14.5 embryos and P0 of control heterozygous mice. A search for the mechanisms behind the observed phenotype revealed several changes, accumulation of which resulted in age-progressing heart dysfunction. The main changes that mostly contribute to this functional impairment are the increase in cardiomyocyte proliferation in newborns, disorganization of intercalated discs, and overexpression of SERCA2 in hearts isolated from 12-month-old mice, indicative of functional alterations of sarcoplasmic reticulum. Also, possible aberrations in the heart vascularization, observed in 12-month-old animals could be additional factors responsible for MVI-associated heart dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2023.166748DOI Listing

Publication Analysis

Top Keywords

unconventional myosin
8
involvement cardiac
8
cardiac dysfunction
8
sarcoplasmic reticulum
8
intercalated discs
8
e145 embryos
8
heart dysfunction
8
heart
7
myosin heart
4
heart involvement
4

Similar Publications

MIRO2 promotes cancer invasion and metastasis via MYO9B suppression of RhoA activity.

Cell Rep

December 2024

Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA; University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA. Electronic address:

Metastasis to vital organs remains the leading cause of cancer-related deaths, emphasizing an urgent need for actionable targets in advanced-stage cancer. The role of mitochondrial Rho GTPase 2 (MIRO2) in prostate cancer growth was recently reported; however, whether MIRO2 is important for additional steps in the metastatic cascade is unknown. Here, we show that knockdown of MIRO2 ubiquitously reduces tumor cell invasion in vitro and suppresses metastatic burden in prostate and breast cancer mouse models.

View Article and Find Full Text PDF

An unconventional myosin, myosin VI gene (MYO6), contributes to recessive and dominant hearing loss in humans and mice. The Kumamoto shaker/waltzer (ksv) mouse is a model of deafness resulting from a splice-site mutation in Myo6. While ksv/ksv homozygous mice are deaf due to cochlear hair cell stereocilia fusion at the neonatal stage, the hearing phenotypes of ksv/+ heterozygous mice have been less clear.

View Article and Find Full Text PDF

Myosin-5a facilitates stress granule formation by interacting with G3BP1.

Cell Mol Life Sci

October 2024

Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.

Stress granules (SGs) are non-membranous organelles composed of mRNA and proteins that assemble in the cytosol when the cell is under stress. Although the composition of mammalian SGs is both cell-type and stress-dependent, they consistently contain core components, such as Ras GTPase activating protein SH3 domain binding protein 1 (G3BP1). Upon stress, living cells rapidly assemble micrometric SGs, sometimes within a few minutes, suggesting that SG components may be actively transported by the microtubule and/or actin cytoskeleton.

View Article and Find Full Text PDF

Dynamic shape-shifting of the single-celled eukaryotic predator Lacrymaria via unconventional cytoskeletal components.

Curr Biol

November 2024

Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, Hubei, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), No. 7 Donghu South Road, Wuchang District, Wuhan 430072, Hubei, China; State Key Laboratory of Freshwater Ecology and Biotechnology, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, Hubei, China; Hubei Hongshan Laboratory, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China. Electronic address:

Article Synopsis
  • * The mechanism behind this shape-shifting is unclear but involves a unique system of actin and myosin, differing from other ciliates that use calcium-dependent methods.
  • * Two types of cytoskeletons, myoneme and microtubule, exist in Lacrymaria, with a newly discovered giant protein facilitating coordination between them, enabling effective neck-body independence during movement.
View Article and Find Full Text PDF

Caspases, well-known for their role in executing apoptosis, also participate in various non-apoptotic processes. Despite this, their involvement in promoting compensatory proliferation - a key aspect of tissue regeneration following extensive cell death - has been a subject of ongoing ambiguity. In our study, we investigate compensatory proliferation in the wing imaginal disc following ionizing radiation, a model epithelial tissue that has been a pioneering system for studying this regenerative response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!