Introduction: Congenital urinary obstruction is a common cause of end-stage renal disease in the pediatric population. However, non-invasive diagnostics to predict which patients will benefit from early intervention are lacking.
Methods: Using a rat model of upper and lower urinary tract partial obstruction and the Nanostring nCounter Fibrosis V2 Panel, we evaluated the mRNA cargo of urinary small extracellular vesicles (sEVs) and mRNA expression patterns of kidney and bladder tissues from rats with lower tract urinary obstruction and upper tract urinary obstruction.
Results: While mRNA hierarchical clustering of urinary sEVs was unable to differentiate upper compared to lower tract urinary obstruction, clustering was able to detect overall disease state (UUTO or LUTO) versus healthy controls. Further, urinary sEVs carried genes unique to each treatment group (UUTO: 59 genes, LUTO: 17 genes), while only one gene was uniquely carried in the control group. Notable genes of interest found in urinary sEVs were VCAM-1 and NOS1 for UUTO, Egfr for LUTO, and Pck1 for healthy controls.
Conclusion: This study provides support that differential gene expression of urinary sEV mRNA has potential to act as biomarkers in the diagnosis and prognosis of UTO. Urinary sEVs demonstrated higher numbers of unique genes representative of injury to the kidney than that of injury to the bladder. Importantly, there were genes unique to UUTO sEVs, indicating the extent and reversibility of renal damage can be independent of the function, damage, and architecture of the bladder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165232 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!