V/A-ATPase is a rotary molecular motor protein that produces ATP through the rotation of its central rotor. The soluble part of this protein, the V domain, rotates upon ATP hydrolysis. However, the mechanism by which ATP hydrolysis in the V domain couples with the mechanical rotation of the rotor is still unclear. Cryo-EM snapshot analysis of V/A-ATPase indicated that three independent and simultaneous catalytic events occurred at the three catalytic dimers (AB, AB, and AB), leading to a 120° rotation of the central rotor. Besides the closing motion caused by ATP bound to AB, the hydrolysis of ATP bound to AB drives the 120° step. Our recent time-resolved cryo-EM snapshot analysis provides further evidence for this model. This review aimed to provide a comprehensive overview of the structure and function of V/A-ATPase from a thermophilic bacterium, one of the most well-studied rotary ATPases to date.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166205 | PMC |
http://dx.doi.org/10.3389/fmolb.2023.1176114 | DOI Listing |
Nat Commun
January 2025
Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA.
DEAD-box RNA-dependent ATPases are ubiquitous in all domains of life where they bind and remodel RNA and RNA-protein complexes. DEAD-box ATPases with helicase activity unwind RNA duplexes by local opening of helical regions without directional movement through the duplexes and some of these enzymes, including Ded1p from Saccharomyces cerevisiae, oligomerize to effectively unwind RNA duplexes. Whether and how DEAD-box helicases coordinate oligomerization and unwinding is not known and it is unclear how many base pairs are actively opened.
View Article and Find Full Text PDFBiophys J
January 2025
Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama. Electronic address:
The Hsp100 family of protein disaggregases play important roles in maintaining protein homeostasis in cells. E. coli ClpB is an Hsp100 protein that solubilizes protein aggregates.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia.
ATP-binding cassette (ABC) transporters are a large family of proteins that transport various substances across cell membranes using energy from ATP hydrolysis. ATP-binding cassette sub-family G member 1 (ABCG1) is a member of the ABCG subfamily of transporters and performs many important functions, such as the export of cholesterol and some other lipids across the membranes of various cells. Cholesterol transport is the mechanism that links metabolism and the innate immune system.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester M13 9PT, UK.
Adenosine triphosphate-binding cassette (ABC) transporters form a ubiquitous superfamily of integral membrane proteins involved in the translocation of substrates across membranes. Human ABC transporters are closely linked to the pathogenesis of diseases such as cancer, metabolic diseases, and Alzheimer's disease. In this study, four ABC transporters were chosen based on (I) their importance in humans and (II) their score in a structural bioinformatics screen aimed at the prediction of crystallisation propensity.
View Article and Find Full Text PDFRev Physiol Biochem Pharmacol
January 2025
Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
Packaging of DNA into viruses in some cases involves remarkably sophisticated electrical control mechanisms. One example is how the T4 bacteriophage uses an electrostatically driven motor to pump DNA into the viral capsid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!