Posttraumatic osteoarthritis (PTOA) is a subset of osteoarthritis that occurs after joint injury and is associated with degradation of articular cartilage and subchondral bone. As compared with primary osteoarthritis, PTOA occurs in a time window initiated by a traumatic event resulting in damage to layers of joint structure and alterations in joint shape. As techniques in open reduction and internal fixation continue to mature, our success in preventing posttraumatic osteoarthritis has not kept pace. Advances in research in the subchondral bone, inflammatory response, and joint mechanics continue to open our understanding of this posttraumatic process. In addition, there are possibilities emerging as biological agents to therapeutically alter the progression of PTOA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166366 | PMC |
http://dx.doi.org/10.1097/OI9.0000000000000232 | DOI Listing |
Adv Sci (Weinh)
January 2025
Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment.
View Article and Find Full Text PDFPLoS One
January 2025
Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States of America.
Post-traumatic osteoarthritis (PTOA) is a painful joint disease characterized by the degradation of bone, cartilage, and other connective tissues in the joint. PTOA is initiated by trauma to joint-stabilizing tissues, such as the anterior cruciate ligament, medial meniscus, or by intra-articular fractures. In humans, ~50% of joint injuries progress to PTOA, while the rest spontaneously resolve.
View Article and Find Full Text PDFArch Orthop Trauma Surg
January 2025
Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, Tübingen, Germany.
Introduction: Perilunate dislocations (PLD) and perilunate fracture-dislocations (PLFD) are high-energy wrist injuries often linked to significant post-traumatic osteoarthritis. This study aims to determine whether PLD and PLFD yield different radiological outcomes following surgical treatment while identifying prognostic factors for worse outcomes.
Materials And Methods: We retrospectively analyzed 51 patients treated for perilunate injuries between 2000 and 2022.
Am J Sports Med
January 2025
Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA.
Background: Anterior cruciate ligament (ACL) injury often leads to posttraumatic osteoarthritis (PTOA), despite ACL reconstruction (ACLR). Medial meniscal extrusion (MME) is implicated in PTOA progression but remains understudied after ACL injury and ACLR.
Hypothesis/purpose: It was hypothesized that MME would increase longitudinally after ACL injury and ACLR, with greater changes in the ipsilateral knee compared with the contralateral knee, leading to cartilage degeneration.
J Magn Reson Imaging
December 2024
Department of Radiology, Stanford University, Stanford, California, USA.
Background: Post-traumatic osteoarthritis (PTOA) often follows anterior cruciate ligament reconstruction (ACLR), leading to early cartilage degradation. Change in mean T fails to capture subject-specific spatial-temporal variations, highlighting the need for robust quantitative methods for early PTOA detection and monitoring.
Purpose/hypothesis: Develop and apply 3D T cluster analysis to ACLR and healthy knees over 2.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!