Rational Construction of Protein-Mimetic Nano-Switch Systems Based on Secondary Structure Transitions of Synthetic Polypeptides.

J Am Chem Soc

Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.

Published: May 2023

The manipulation of the flexibility/rigidity of polymeric chains to control their function is commonly observed in natural macromolecules but largely unexplored in synthetic systems. Herein, we construct a series of protein-mimetic nano-switches consisting of a gold nanoparticle (GNP) core, a synthetic polypeptide linker, and an optically functional molecule (OFM), whose biological function can be dynamically regulated by the flexibility of the polypeptide linker. At the dormant state, the polypeptide adopts a flexible, random-coiled conformation, bringing GNP and OFM in close proximity that leads to the "turn-off" of the OFM. Once treated with alkaline phosphatase (ALP), the nano-switches are activated due to the increased separation distance between GNP and OFM driven by the coil-to-helix and flexible-to-rigid transition of the polypeptide linker. The nano-switches therefore enable selective fluorescence imaging or photodynamic therapy in response to ALP overproduced by tumor cells. The control over polymer flexibility represents an effective strategy to manipulate the optical activity of nano-switches, which mimics the delicate structure-property relationship of natural proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.3c01156DOI Listing

Publication Analysis

Top Keywords

polypeptide linker
12
gnp ofm
8
rational construction
4
construction protein-mimetic
4
protein-mimetic nano-switch
4
nano-switch systems
4
systems based
4
based secondary
4
secondary structure
4
structure transitions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!