Highly efficient electrodes with simplified fabrication and low cost are highly desired for the commercialization of proton exchange membrane electrolyzer cells (PEMECs). Herein, highly porous Ir-coated thin/tunable liquid/gas diffusion layers with honeycomb-structured catalyst layers were fabricated as anode electrodes for PEMECs via integrating a facile and fast electroplating process with efficient template removal. Combined with a Nafion 117 membrane, a low cell voltage of 1.842 V at 2000 mA/cm and a high mass activity of 4.16 A/mg at 1.7 V were achieved with a low Ir loading of 0.27 mg/cm, outperforming most of the recently reported anode catalysts. Moreover, the thin electrode shows outstanding stability at a high current density of 1800 mA/cm in the practical PEMEC. Moreover, with in-situ high-speed visualizations in PEMECs, the catalyst layer structure's impact on real-time electrochemical reactions and mass transport phenomena was investigated for the first time. Increased active sites and improved multiphase transport properties with favorable bubble detachment and water diffusion for the honeycomb-structured electrode are revealed. Overall, the significantly simplified ionomer-free honeycomb thin electrode with low catalyst loading and remarkable performance could efficiently accelerate the industrial application of PEMECs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c23304 | DOI Listing |
Biomater Adv
December 2024
International Chinese-Belorussian Scientific laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei street, Nanjing 210094, China. Electronic address:
Postoperative wound healing has been extensively studied and well-documented. Gelatin sponges are commonly used in surgeries for blood absorption. If these sponges can also release drugs with anti-scarring and anti-inflammatory effects, they would significantly enhance wound healing.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Chemistry and Environment, Shaanxi Provincial University Key Laboratory of Interfacial Porous Materials, Ankang Research Centre of New Nano-materials Science and Technology, Innovation Research Institute of Advanced Energy Storage Materials and Battery Technology for Future Industrialization, Ankang University, Shaanxi, Ankang 725000, PR China.
Polyurethane (PU) foam is widely used in industrial and civil fields, but it is highly flammable. An eco-friendly flame-retardant coating has been fabricated from sodium alginate (SA) and mica powder, it has been applied to PU foam using a facile direct dip coating method, followed by crosslinking with Ca and modification with polydimethylsiloxane (PDMS), respectively. The original porous network structure is maintained in the coated PU (SMPU) foam with a porosity of 90.
View Article and Find Full Text PDFAdv Mater
December 2024
King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Functional Materials Design, Discovery and Development Research Group (FMD3), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
Here, the fundamental requirements are described for understanding and using topology tools in the design of porous materials, emphasizing the relationships between nets, metal-organic framework (MOF) structures, nodes, and building blocks. Common design approaches are discussed, highlighting prerequisites for the rational design of MOFs, such as those with simple pcu topology through the molecular building block approach, or axial-to-axial pillaring. The importance of highly connected nets and building units is emphasized for achieving structural predictability.
View Article and Find Full Text PDFComput Biol Med
December 2024
Center for Lightweight Materials, Design, and Manufacturing, Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok, 10140, Thailand; OsseoLabs Co. Ltd., Bangkok, 10400, Thailand. Electronic address:
Sacral chordoma, an invasive tumor, necessitates surgical removal of the tumor and the affected region of the sacrum, disrupting the spinopelvic connection. Conventional reconstruction methods, relying on rod and screw systems, often face challenges such as rod failure, sub-optimal stability, and limited osseointegration. This study proposes a novel design for a porous-based sacral reconstruction prosthesis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Barrer Centre, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
Graphene oxide (GO)-based membranes have demonstrated great potential in water treatment. However, microdefects in the framework of GO membranes induced by the imperfect stacking of GO nanosheets undermine their size-sieving ability and structural stability in aqueous systems. This study proposes a targeted growth approach by growing zeolitic imidazolate framework-8 (ZIF-8) nanocrystals precisely to patch microdefects as well as to cross-link the porous graphene oxide (PGO) flakes coated on the outer surface of the hollow fiber (HF) alumina substrate (named the hybrid PGO/ZIF-8 membrane).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!