Objective: The purpose of this study is to calculate the electric field produced by an implanted microcoil during magnetic stimulation of the brain.

Methods: The electric field of a microcoil was calculated numerically.

Results: The maximum value of the induced electric field is approximately 0.000026 V/m for a 1 mA, 3 kHz current passed through the coil.

Conclusion: This electric field value is too small to cause neural stimulation.

Significance: Previous studies reporting magnetic stimulation using a microcoil must have been exciting neurons by some other mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2023.3275098DOI Listing

Publication Analysis

Top Keywords

electric field
20
magnetic stimulation
12
microcoil magnetic
8
electric
5
field induced
4
microcoil
4
induced microcoil
4
stimulation objective
4
objective purpose
4
purpose study
4

Similar Publications

Quickly identifying and classifying lightning waveforms is the foundation of lightning forecasting and early warning. In this paper, based on the electric field observation of the Beijing lightning location website of the Institute of Atmospheric Physics, Chinese Academy of Sciences, a recognition and classification method of pulse signal waveform based on Convolutional Neural Network(CNN) algorithm is designed and implemented. The CNN network model and its parameters were optimized from three aspects: dataset, model parameters, and network structure, achieving a recognition rate of over 90%.

View Article and Find Full Text PDF

Advances in the semiconductor industry have been limited owing to the constraints imposed by silicon-based CMOS technology; hence, innovative device design approaches are necessary. This study focuses on "more than Moore" approaches, specifically in neuromorphic computing. Although MoS devices have attracted attention as neuromorphic computing candidates, their performances have been limited due to environment-induced perturbations to carrier dynamics and the formation of defect states.

View Article and Find Full Text PDF

Optical metasurfaces, arrays of nanostructures engineered to manipulate light, have emerged as a transformative technology in both research and industry due to their compact design and exceptional light control capabilities. Their strong light-matter interactions enable precise wavefront modulation, polarization control, and significant near-field enhancements. These unique properties have recently driven their application in biomedical fields.

View Article and Find Full Text PDF

Van der Waals electrode integration is a promising strategy to create nearly perfect interfaces between metals and 2D materials, with advantages such as eliminating Fermi-level pinning and reducing contact resistance. However, the lack of a simple, generalizable pick-and-place transfer technology has greatly hampered the wide use of this technique. We demonstrate the pick-and-place transfer of prefabricated electrodes from reusable polished hydrogenated diamond substrates without the use of any sacrificial layers due to the inherent low-energy and dangling-bond-free nature of the hydrogenated diamond surface.

View Article and Find Full Text PDF

Extracellular vesicles (EVs), membrane-encapsulated nanoparticles shed from all cells, are tightly involved in critical cellular functions. Moreover, EVs have recently emerged as exciting therapeutic modalities, delivery vectors, and biomarker sources. However, EVs are difficult to characterize, because they are typically small and heterogeneous in size, origin, and molecular content.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!