The chemistry of 1,2,4,5-tetrazines has attracted considerable interest both from a synthetic and applicative standpoint. Recently, regioselective reactions with alkynes and alkenes have been reported to be favored once the tetrazine ring is coordinated to Re(I), Ru(II), and Ir(III) centers. Aiming to further explore the effects of metal coordination, herein, we unveil the unexplored reactivity of tetrazines with chalcogenocyanate anions. Thus, ruthenium(II) tetrazine complexes, [RuCl{κ-3-(2-pyridyl)-6--1,2,4,5-tetrazine}(η-arene)] (arene = -cymene, R = H, [], R = Me, [], R = 2-pyridyl, []; arene = CMe, R = H, [], R = Me, []; PF salts), reacted quantitatively and in mild conditions with M(ECN) salts (M = Na, K, BuN; E = O, S, Se). The addition of thiocyanate or selenocyanate to the tetrazine ligand is regioselective and afforded, N release, 1,2,4-triazine-5-chalcogenone heterocycles, the one with selenium being unprecedented. The novel ruthenium complexes [RuCl{κ-(2-pyridyl)}{triazine chalcogenone}(η-arene)] - (sulfur), , , and (selenium) were characterized by analytical (CHNS analyses, conductivity), spectroscopic (IR, multinuclear and two-dimensional (2D) NMR), and spectrometric (electrospray ionization mass spectrometry (ESI-MS)) techniques. According to density functional theory (DFT) calculations, the nucleophilic attack of SCN on the tetrazine ring is kinetically driven. Compound is selectively and reversibly mono-protonated on the triazine ring by HCl or other strong acids, affording a single tautomer. When reactions of chalcogenocyanates were performed on the 2,2'-bipyridine (bpy) complex [RuCl(bpy)(η--cymene)], the chloride substitution products [Ru(ECN)(bpy)(η--cymene)] (E = O, []; E = S, []; E = Se, []) were obtained in 82-90% yields (PF salts). Combined spectroscopic data (IR, H/C/Se NMR) was revealed to be a useful tool to study the linkage isomerism of the chalcogenocyanate ligand in [-].
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10263068 | PMC |
http://dx.doi.org/10.1021/acs.inorgchem.3c00459 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!