An immunoinformatics approach to epitope-based vaccine design against PspA in Streptococcus pneumoniae.

J Genet Eng Biotechnol

Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, 1205, Bangladesh.

Published: May 2023

Background: Streptococcus pneumoniae (SPN) is the agent responsible for causing respiratory diseases, including pneumonia, which causes severe health hazards and child deaths globally. Antibiotics are used to treat SPN as a first-line treatment, but nowadays, SPN is showing resistance to several antibiotics. A vaccine can overcome this global problem by preventing this deadly pathogen. The conventional methods of wet-laboratory vaccine design and development are an intense, lengthy, and costly procedure. In contrast, epitope-based in silico vaccine designing can save time, money, and energy. In this study, pneumococcal surface protein A (PspA), one of the major virulence factors of SPN, is used to design a multi-epitope vaccine.

Methods: For designing the vaccine, the sequence of PspA was retrieved, and then, phylogenetic analysis was performed. Several CTL epitopes, HTL epitopes, and LBL epitopes of PspA were all predicted by using several bioinformatics tools. After checking the antigenicity, allergenicity, and toxicity scores, the best epitopes were selected for the vaccine construction, and then, physicochemical and immunological properties were analyzed. Subsequently, vaccine 3D structure prediction, refinement, and validation were performed. Molecular docking, molecular dynamic simulation, and immune simulation were performed to ensure the binding between HLA and TLR4. Finally, codon adaptation and in silico cloning were performed to transfer into a suitable vector.

Results: The constructed multi-epitope vaccine showed a strong binding affinity with the receptor molecule TLR4. Analysis of molecular dynamic simulation, C-immune simulation, codon adaptation, and in silico cloning validated that our designed vaccine is a suitable candidate against SPN.

Conclusion: The in silico analysis has proven the vaccine as an alternative medication to combat against S. pneumoniae. The designated vaccine can be further tested in the wet lab, and a novel vaccine can be developed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173237PMC
http://dx.doi.org/10.1186/s43141-023-00506-9DOI Listing

Publication Analysis

Top Keywords

vaccine
12
vaccine design
8
streptococcus pneumoniae
8
molecular dynamic
8
dynamic simulation
8
codon adaptation
8
adaptation silico
8
silico cloning
8
immunoinformatics approach
4
approach epitope-based
4

Similar Publications

Background: Whether a detected virus or bacteria is a pathogen that may require treatment, or is merely a commensal 'passenger', remains confusing for many infections. This confusion is likely to increase with the wider use of multi-pathogen PCR.

Objectives: To propose a new statistical procedure to analyse and present data from case-control studies clarifying the probability of causality.

View Article and Find Full Text PDF

This study aims to investigate the expression of seven cancer testis antigens (MAGE-A1, MAGE-A4, MAGE-A10, MAGE-A11, PRAME, NY-ESO-1 and KK-LC-1) in pan squamous cell carcinoma and their prognostic value, thus assessing the potential of these CTAs as immunotherapeutic targets. The protein expression of these CTAs was evaluated by immunohistochemistry in 60 lung squamous cell carcinoma (LUSC), 62 esophageal squamous cell carcinoma (ESCA) and 62 head and neck squamous cell carcinoma (HNSC). The relationship between CTAs expression and progression-free survival (PFS) was assessed.

View Article and Find Full Text PDF

Introduction: The coronavirus disease 2019 (COVID-19) pandemic has significantly impacted public transportation systems worldwide. In this study, we evaluated the rate of COVID-19 positivity and its associated factors among users of public transportation in socioeconomically disadvantaged regions of Brazil during the pre-vaccination phase of the pandemic.

Methodology: This ecological study, conducted in Aracaju city in Northeast Brazil, is a component of the TestAju Program.

View Article and Find Full Text PDF

Introduction: Coronavirus disease 2019 (COVID-19) is a life-threatening disease that was declared a pandemic in March 2020. Organ transplant recipients are vulnerable to infection and complications from COVID-19. The objective of this study was to investigate the rates of infection, mortality, and case-fatality ratios (CFR) in solid organ transplant recipients and patients on the waiting list for organ allocation in the period prior to the availability of specific vaccines.

View Article and Find Full Text PDF

Introduction: Despite efforts by health organizations to share evidence-based information, fake news hindered the promotion of social distancing and vaccination during the coronavirus disease 2019 (COVID-19) pandemic. This study analyzed COVID-19 knowledge and practices in a vulnerable area in northern Rio de Janeiro, acknowledging the influence of the complex social and economic landscape on public health perceptions.

Methodology: This cross-sectional study was conducted in Novo Eldorado - a low-income, conflict-affected neighborhood in Campos dos Goytacazes - using a structured questionnaire, following the peak of COVID-19 deaths in Brazil (July-December 2021).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!