To study the function of RNA-binding proteins (RBPs), an overexpression or knockout approach is generally used. However, as many RBPs are essential to cellular functions, the complete knockout of these proteins may be lethal to the cell. Overexpression of RBPs, on the other hand, may create an altered transcriptome and aberrant phenotypes that can mask their physiological function. Additionally, biochemical characterization of RBP often requires highly specific antibodies for efficient immunoprecipitation for downstream mass spectrometry or RNA footprinting profiling. To overcome these hurdles, we have developed a strategy to generate cellular systems either using a CRISPR-Cas9-mediated epitope tag knock-in approach or a two-step workflow to first stably express an exogenous Flag-tagged RBP and subsequently knockout the endogenous RBP using CRISPR-Cas9 gene editing. The generation of these cell lines will be beneficial for downstream RNA footprinting studies and mass spectrometry-mediated interactome studies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3191-1_18DOI Listing

Publication Analysis

Top Keywords

rna footprinting
8
rna protein
4
protein interactomes
4
interactomes rna-binding
4
rna-binding protein
4
protein tagged
4
tagged flag
4
flag epitopes
4
epitopes combinatory
4
combinatory approaches
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!