Purpose: To summarize the mechanical loading of the spine in different activities of daily living and sports.
Methods: Since the direct measurement is not feasible in sports activities, a mathematical model was applied to quantify spinal loading of more than 600 physical tasks in more than 200 athletes from several sports disciplines. The outcome is compression and torque (normalized to body weight/mass) at L4/L5.
Results: The data demonstrate high compressive forces on the lumbar spine in sport-related activities, which are much higher than forces reported in normal daily activities and work tasks. Especially ballistic jumping and landing skills yield high estimated compression at L4/L5 of more than ten times body weight. Jumping, landing, heavy lifting and weight training in sports demonstrate compression forces significantly higher than guideline recommendations for working tasks.
Conclusion: These results may help to identify acute and long-term risks of low back pain and, thus, may guide the development of preventive interventions for low back pain or injury in athletes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00586-023-07733-1 | DOI Listing |
Acta Chir Orthop Traumatol Cech
January 2025
Klinika dětské chirurgie, ortopedie a traumatologie Fakultní nemocnice Brno.
Purpose Of The Study: Temporary hemiepiphyseodesis using figure-eight plates is currently one of the main surgical techniques to correct axial deformities of lower limbs in paediatric patients. Comprehensive analysis, correct indication and monitoring of treatment are the basic prerequisites for successful therapy. The aim of the study was to analyse parameters that could become an alternative to standard parameters used nowadays, namely the inserted screw angle (SA), and a new parameter - condylar ratio (CR).
View Article and Find Full Text PDFRep U S
October 2024
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
In diagnosing and treating prostate cancer the flexible bevel tip needle insertion surgical technique is commonly used. Bevel tip needles experience asymmetric loading on the needle's tip, inducing natural bending of the needle and enabling control mechanisms for precise placement of the needle during surgery. Several methods leverage the needles natural bending to provide autonomous control of needle insertion for accurate needle placement in an effort to reduce excess tissue damage and improve patient outcomes from needle insertion intraventions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
Presently, researchers are placing emphasis on microwave absorption coating design while neglecting the research on materials that integrate both microwave absorption performance and mechanical properties. Here, robust FeSiAl/PEEK composites were prepared by a series process, including post ball-milling annealing, sol-gel method, and hot pressing. A detailed analysis of the electromagnetic (EM) parameters reveals the significant effects of morphology, filling ratio, and microstructure of FeSiAl on EM losses under a wide-temperature range.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
Background: Meniscus tears can change the biomechanical environment of the knee joint and might accelerate the development of osteoarthritis. The aim of this study was to investigate the dynamic biomechanical effects of different medial meniscus tear positions and tear gaps on the knee during walking.
Methods: Seven finite element models of the knee joint were constructed, including the intact medial meniscus (IMM), radial stable tears in the anterior, middle, and posterior one-third regions of the medial meniscus (RSTA, RSTM, RSTP), and the corresponding unstable tears (RUTA, RUTM, RUTP).
J Prosthodont Res
January 2025
Center of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
Purpose: We aimed to analyze the influence of different designs (inlay, onlay, and crown) on stress distribution and crack propagation in an endodontically treated cracked premolar.
Methods: Three-dimensional (3D) finite element analysis (FEA) was employed to model an endodontically treated cracked premolar with three different restorations (inlay, onlay, and crown). Six types of loadings (vertical loading of 600 N; hot thermal-600 N vertical coupling loading; cold thermal-600 N vertical coupling loading; oblique loading of 200 N; hot thermal-200 N oblique coupling loading; cold thermal-200 N oblique coupling loading) were applied to simulate the hot and cold food/beverages intake.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!