A temporal and spatial study of genetic structure in four species of bladed Bangiales (Rhodophyta) from the southeastern Pacific coast of Chile.

J Phycol

Núcleo Milenio MASH, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile.

Published: August 2023

The coastline is a heterogeneous and highly dynamic environment influenced by abiotic and biotic variables affecting the temporal stability of genetic diversity and structure of marine organisms. The aim of this study was to determine how much the genetic structure of four species of marine Bangiales vary in time and space. Partial sequences of the cytochrome oxidase I (COI) gene obtained from two Pyropia (Py. sp. CHJ and Py. orbicularis) and two Porphyra (P. mumfordii and P. sp. FIH) species were used to compare the effect of the 40° S/41° S biogeographic break (spatial-regional scale) and the one of the Valdivia River discharges (spatial-local scale) and determine their temporal stability. Four seasonal samplings were taken during 1 year at five sites, one site located in Melinka (Magallanes province) and four sites along the coast of Valdivia (Intermediate area), on both sides of the river mouth. Results showed a strong genetic spatial structure at regional scale (ΦST > 0.4) in Py. sp. CHJ, Py. orbicularis, and P. mumfordii, congruent with the 41° S/42° S biogeographic break. A potential barrier to gene flow, related to the Valdivia River discharge, was detected only in P. mumfordii. In P. sp. FIH, spatial genetic structure was not detected at any scale. The genetic structure of all four species is stable throughout the year. The potential effect of main currents and river discharge in limiting the transport of Bangiales spores are discussed. We propose that both a restricted propagule dispersal and the formation potential for persistent banks of microscopic stages could lead to a temporally stable spatial partitioning of genetic variation in bladed Bangiales.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jpy.13343DOI Listing

Publication Analysis

Top Keywords

genetic structure
16
structure species
12
bladed bangiales
8
temporal stability
8
chj orbicularis
8
mumfordii fih
8
biogeographic break
8
valdivia river
8
river discharge
8
genetic
7

Similar Publications

Coccidiosis, a parasitic disease caused by Eimeria protozoa that parasitizes intestinal tissues of chicken, poses a challenge to the development of the poultry industry. circRNAs are a class of circular RNA macromolecules crucial in the immune response to pathogens. Previous studies have shown that gga-miR-2954 inhibits the inflammatory response to Eimeria tenella (E.

View Article and Find Full Text PDF

Application of herbicide-degrading bacteria is an effective strategy to remove herbicide in soil. However, the ability of bacteria to degrade a herbicide is often severely limited in the presence of other pesticide. In this study, the atrazine-degrading strain Klebsiella varicola FH-1 and acetochlor-degrading strain Bacillus Aryabhatti LY-4 were used as parent strains to construct the recombinant RH-92 strain through protoplast fusion technology.

View Article and Find Full Text PDF

Crystal structure of the anti-CRISPR protein AcrIE7.

Biochem Biophys Res Commun

January 2025

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China; Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China. Electronic address:

Bacterial adaptive immunity, driven by CRISPR-Cas systems, protects against foreign nucleic acids from mobile genetic elements (MGEs), like bacteriophages. The type I-E CRISPR-Cas system employs the Cascade (CRISPR-associated complex for antiviral defense) complex for target DNA cleavage, guided by crRNA. Anti-CRISPR (Acr) proteins, such as AcrIE7, counteract this defense by inhibiting Cascade activity.

View Article and Find Full Text PDF

Peptide nucleic acids (PNA), synthetic molecules comprising a peptide-like backbone and natural and unnatural nucleobases, have garnered significant attention for their potential applications in gene editing and other biomedical fields. The unique properties of PNA, particularly enhanced stability/specificity/affinity towards targeted DNA and RNA sequences, achieved significant attention recently for gene silencing, gene correction, antisense therapy, drug delivery, biosensing and other various diagnostic aspects. This review explores the structure, properties, and potential of PNA in transforming genetic engineering including potent biomedical challenges.

View Article and Find Full Text PDF

Background: Congenital factor VII (FVII) deficiency is a genetic disorder characterized by decreased FVII activity, which sometimes leads to fatal bleeding. Numerous variants have been found in FVII deficiency, but mutations vary among patients. Each mutation deserves further exploration for each patient at risk of bleeding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!