AI Article Synopsis

  • A series of new compounds called ester tethered dihydroartemisinin-3-(oxime/thiosemicarbazide)isatin hybrids (7a-p) were created to study their effects on breast cancer cells.
  • Some of these hybrids (specifically 7a and 7f) showed strong anti-cancer activity, particularly against difficult cases of triple-negative breast cancer.
  • The results indicate that these new compounds might be more effective than existing treatments like artemisinin and ADR, suggesting they could be useful for both drug-sensitive and drug-resistant breast cancer cases.

Article Abstract

A series of ester tethered dihydroartemisinin-3-(oxime/thiosemicarbazide)isatin hybrids 7a-p were designed, synthesized, and assessed for their antiproliferative activity against MCF-7, MDA-MB-231, MCF-7/ADR, and MDA-MB-231/ADR breast cancer cell lines. Among them, hybrids 7a,f (IC : 1.33-3.84 µM) showed potent activity against triple-negative (MDA-MB-231 and MDA-MB-231/ADR) breast cancer cell lines, and hybrid 7f (IC : 3.90 and 10.18 µM) also demonstrated promising activity against estrogen receptor-positive breast cancer cells (MCF-7 and MCF-7/ADR), and the activity was superior to these of artemisinin, dihydroartemisinin, and ADR, revealing their potential to fight against both drug-sensitive and drug-resistant breast cancers. The enriched structure-activity relationships may facilitate further design of more active candidates.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ddr.22078DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
ester tethered
8
tethered dihydroartemisinin-3-oxime/thiosemicarbazideisatin
8
dihydroartemisinin-3-oxime/thiosemicarbazideisatin hybrids
8
mda-mb-231/adr breast
8
cancer cell
8
cell lines
8
novel ester
4
hybrids potential
4
potential anti-breast
4

Similar Publications

Background: Randomized clinical trials (RCTs) are fundamental to evidence-based medicine, but their real-world impact on clinical practice often remains unmonitored. Leveraging large-scale real-world data can enable systematic monitoring of RCT effects. We aimed to develop a reproducible framework using real-world data to assess how major RCTs influence medical practice, using two pivotal surgical RCTs in gynaecologic oncology as an example-the LACC (Laparoscopic Approach to Cervical Cancer) and LION (Lymphadenectomy in Ovarian Neoplasms) trials.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer, characterized by frequent recurrence, metastasis, and poor survival outcomes despite chemotherapy-based treatments. This study aims to investigate the mechanisms by which Traditional Chinese Medicine (TCM) modulates the tumor immune microenvironment in TNBC, utilizing CiteSpace and bioinformatics analysis.

Methods: We employed CiteSpace to analyze treatment hotspots and key TCM formulations, followed by bioinformatics analysis to identify the main active components, targets, associated pathways, and their clinical implications in TNBC treatment.

View Article and Find Full Text PDF

Introduction: Breast cancer (BC) is the most prevalent malignant tumor in women, with triple-negative breast cancer (TNBC) showing the poorest prognosis among all subtypes. Glycosylation is increasingly recognized as a critical biomarker in the tumor microenvironment, particularly in BC. However, the glycosylation-related genes associated with TNBC have not yet been defined.

View Article and Find Full Text PDF

Purpose: A promising feature of marine sponges is the potential anticancer efficacy of their secondary metabolites. The objective of this study was to explore the anticancer activities of compounds from the fungal symbiont of on breast cancer cells.

Methods: In the present research, , an endophytic fungal strain derived from the marine sponge was successfully isolated and characterized.

View Article and Find Full Text PDF

Nanoparticle technology has revolutionized breast cancer treatment by offering innovative solutions addressing the gaps in traditional treatment methods. This paper aimed to comprehensively explore the historical journey and advancements of nanoparticles in breast cancer treatment, highlighting their transformative impact on modern medicine. The discussion traces the evolution of nanoparticle-based therapies from their early conceptualization to their current applications and future potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!