Traumatic events can lead to lifelong, inflexible adaptations in threat perception and behavior, which characterize posttraumatic stress disorder (PTSD). This process involves associations between sensory cues and internal states of threat and then generalization of the threat responses to previously neutral cues. However, most formulations neglect adaptations to threat that are not specific to those associations. To incorporate nonassociative responses to threat, we propose a computational theory of PTSD based on adaptation to the frequency of traumatic events by using a reinforcement learning momentum model. Recent threat prediction errors generate momentum that influences subsequent threat perception in novel contexts. This model fits primary data acquired from a mouse model of PTSD, in which unpredictable footshocks in one context accelerate threat learning in a novel context. The theory is consistent with epidemiological data that show that PTSD incidence increases with the number of traumatic events, as well as the disproportionate impact of early life trauma. Because the theory proposes that PTSD relates to the average of recent threat prediction errors rather than the strength of a specific association, it makes novel predictions for the treatment of PTSD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11149767PMC
http://dx.doi.org/10.3758/s13415-023-01085-5DOI Listing

Publication Analysis

Top Keywords

traumatic events
12
threat
9
adaptations threat
8
threat perception
8
threat prediction
8
prediction errors
8
ptsd
6
computational model
4
model learning
4
learning repeated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!