Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The edge-cracked semi-circular bend (SCB) specimen subjected to three-point bending loading is used in many applications to measure the fracture behavior of quasi-brittle materials. The main objective of the present work was to study the effect of the crack length to SCB specimen radius ratio (a/R), span to specimen diameter ratio (S/D), and specimen size on its flexural and mode I crack growth behavior. The contour integral method was implemented using the 3-D finite element method to determine the mode I stress intensity factor. In addition, high-strength concrete specimens were experimentally studied to validate the numerical results. The results show that the maximum compression stress is not sensitive to the S/D value, while the tensile stress is very sensitive. The value of S/D is the main parameter controlling the crack driving force (i.e., the crack mouth opening displacement (CMOD) and the normalized stress intensity factor, Y). For the same S/D, the SCB specimen diameter value change has a marginal effect on CMOD and Y The specimen with S/D = 0.8 showed that it is the most compatible specimen with three-point bending test conditions, regardless of the SCB specimen size. A good agreement between the numerical and experimental results was achieved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10172322 | PMC |
http://dx.doi.org/10.1038/s41598-023-34201-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!