A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Double scattering and pencil beam scanning Monte Carlo workflows for proton therapy retrospective studies on radiation-induced toxicities. | LitMetric

Double scattering and pencil beam scanning Monte Carlo workflows for proton therapy retrospective studies on radiation-induced toxicities.

Cancer Radiother

Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, centre universitaire, 91898 Orsay, France; Inserm LITO, Institut Curie, PSL Research University, University Paris Saclay, 91898 Orsay, France. Electronic address:

Published: June 2023

Purpose: Monte Carlo (MC) simulations can be used to accurately simulate dose and linear energy transfers (LET) distributions, thereby allowing for the calculation of the relative biological effectiveness (RBE) of protons. We present hereby the validation and implementation of a workflow for the Monte Carlo modelling of the double scattered and pencil beam scanning proton beamlines at our institution.

Methods: The TOPAS/Geant4 MC model of the clinical nozzle has been comprehensively validated against measurements. The validation also included a comparison between simulated clinical treatment plans for four representative patients and the clinical treatment planning system (TPS). Moreover, an in-house tool implemented in Python was tested to assess the variable RBE-weighted dose in proton plans, which was illustrated for a patient case with a developing radiation-induced toxicity.

Results: The simulated range and modulation width closely matches the measurements. Gamma-indexes (3%/3mm 3D), which compare the TPS and MC computations, showed a passing rate superior to 98%. The calculated RBE-weighted dose presented a slight increase at the necrosis location, within the PTV margins. This indicates the need for reporting on the physical and biological effects of irradiation in high dose regions, especially at the healthy tissues and increased LET distributions location.

Conclusion: The results demonstrate that the Monte Carlo method can be used to independently validate a TPS calculation, and to estimate LET distributions. The features of the in-house tool can be used to correlate LET and RBE-weighted dose distributions with the incidence of radiation-induced toxicities following proton therapy treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canrad.2023.02.001DOI Listing

Publication Analysis

Top Keywords

monte carlo
16
rbe-weighted dose
12
pencil beam
8
beam scanning
8
proton therapy
8
radiation-induced toxicities
8
clinical treatment
8
in-house tool
8
dose
5
double scattering
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!