The objective of this study was to evaluate the effects of the inclusion of whole-plant corn silage (WPCS) in a starter or total mixed ration (TMR) on growth, blood metabolites, ruminal fermentation, and microbial community in preweaning dairy calves. A total of 45 healthy dairy calves were blocked by date of birth and randomly assigned to 1 of 3 treatments: 100% calf starter (CONS), a mix of 85% calf starter and 15% WPCS [dry matter (DM) basis; CSCS], or 100% WPCS-based lactation TMR (CTMR). Pasteurized normal milk was fed to all the animals under the same regimen. The experiment ran from when the calves were 2 d old to weaning at 63 d. Milk and feed intakes were recorded daily. Growth performance data and blood samples were collected on wk 3, 5, 7, and 9 of the experiment. Rumen fluid was sampled at 40 and 60 d. The 3 treatments had different particle size fractions. The CSCS group had greater medium fraction (<19 mm, >8 mm) and particles retained on 8-mm sieves than the other 2 groups, whereas the CTMR group had the greatest long (>19 mm) and fine (<4 mm) fractions and physically effective neutral detergent fiber (NDF) on 8- and 4-mm sieves, but had the smallest short fraction (<8 mm, >4 mm) and particles retained on 4-mm sieves. The 24-h in vitro digestibility of DM, crude protein (CP), NDF, and acid detergent fiber (ADF) were decreased in order by the CONS, CSCS, and CTMR groups. Compared with the CONS group, the digestibility of ether extract (EE) was lower in the CSCS and CTMR groups, whereas the digestibility of starch was similar among treatments. During the experimental period, the DM, CP, and metabolizable energy intakes from milk, solid feed, and total feed were not affected by treatments. The NDF, ADF, and EE intakes and potentially digestible intakes were greater in the CTMR group than in the other 2 groups. With the exception that body barrel was greater for calves fed CSCS, growth parameters and blood metabolites were similar among treatments. Compared with the CSCS group, the CTMR group had greater rumen pH and total volatile fatty acids, propionate, and isovalerate concentrations, but a lower acetate:propionate ratio. The CTMR group had greater relative abundances of some cellulolytic bacteria (Rikenellaceae RC9 gut group, Christensenellaceae R7, Ruminococcaceae NK4A214, Ruminococcaceae UCG, Ruminococcus, and Erysipelotrichaceae UCG) in the rumen, which may be beneficial for the early acquisition of specific adult-associated microorganisms. In summary, a WPCS-based lactation TMR, but not the WPCS-included starter, had the potential to be an alternative starter in preweaning calves without having significant adverse effects. These findings provide theoretical and practical implications for the rational application of TMR in the early life of dairy calves.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2022-22476 | DOI Listing |
J Med Microbiol
January 2025
Animal and Agriculture Department, Hartpury University, Gloucester, GL19 3BE, UK.
Microbiota in the gastrointestinal tract (GIT) consisting of the rumen and hindgut (the small intestine, cecum and colon) in dairy calves play a vital role in their growth and development. This review discusses the development of dairy calf intestinal microbiomes with an emphasis on the impact that husbandry and rearing management have on microbiome development, health and growth of pre-weaned dairy calves. The diversity and composition of the microbes that colonize the lower GIT (small and large intestine) can have a significant impact on the growth and development of the calf, through influence on nutrient metabolism, immune modulation, resistance or susceptibility to infection, production outputs and behaviour modification in adult life.
View Article and Find Full Text PDFJDS Commun
January 2025
Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
Periparturient dairy cows experience metabolic adaptations to prepare for increased nutrient requirements of the fetus and the onset of lactation. Adaptations include increased peripheral tissue insulin resistance, which can be evaluated experimentally using intravenous glucose tolerance tests (IVGTT). The objective of this study was to determine if prepartum skeletal muscle reserves and supplementation of branched-chain volatile fatty acids (BCVFA) in the prepartum period affected blood glucose, β-hydroxybutyrate (BHB), and insulin concentrations 2 wk prepartum and 1 wk postpartum utilizing an IVGTT.
View Article and Find Full Text PDFJDS Commun
January 2025
Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro (PD), Italy.
In recent decades, a general increase in multiple birth (MB) rate has been reported in both dairy and dual-purpose cattle breeds. As there is evidence that MB has negative effects on economically important traits in dairy cows, the aims of this study were to (i) investigate environmental and genetic factors affecting MB rate and (ii) assess the impact of MB on productive and nonproductive traits of the Austrian dual-purpose breeds Pinzgauer and Tyrol Grey. The dataset included 99,141 calvings of 33,791 Pinzgauer and 68,454 calvings of 19,244 Tyrol Grey cows recorded from 2000 to 2022.
View Article and Find Full Text PDFJDS Commun
January 2025
Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523.
This observational study aimed to characterize the seasonal dynamics of automated BCS throughout the lactation of Holstein cows in a pasture-based system with year-round calvings. Examining the association between nadir BCS (nBCS; defined as the lowest daily BCS after calving) and peak milk yield within each calving period (calendar seasons equally divided in early and late) was a secondary objective of this research. Retrospective data included 2,164 lactations in 539 primiparous (PRI) and 1,625 multiparous (MLT) Holstein cows that calved from July 2021 to June 2023 in a commercial dairy farm located in Southern Chile.
View Article and Find Full Text PDFJDS Commun
January 2025
Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844.
The aim of this study was to determine the effect of the weaning calves at 2 ages (early vs. late) and 2 weaning paces (abrupt over 3 d vs. gradual over 14 d) on plasma oxylipids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!