To ensure the proper utilization of waste biomass (WB) and high-temperature waste heat, this study proposes a new method for obtaining gaseous fuels by pyrolyzing WB and using waste heat in the converter vaporization cooling flue (CVCF). This study is theoretically based on the simulation software Factsage 6.1 and the release patterns of the gaseous products including CO, H, CH and CO obtained from waste biomass, were studied at different temperatures and pressures. Thermogravimetric-mass spectrometer (TG-MS) was used to investigate the pyrolysis of WB at heating rates of 5, 10, 15, and 20 °C/min from room temperature to 1400 °C. Kinetics parameters were calculated by using the Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) models. To investigate the effects of temperature, a settling furnace was also used to simulate CVCF. Thermal decomposition produced the primary gases namely CO, CH, and H. Pyrolysis had an average activation energy of 183.29 kJ/mol. As the temperature increased from 800 °C to 1200 °C, the CO content increased from 39.7 % to 48.9 % and the H content increased from 35 % to 45.1 %. As the temperature rose from 800 to 1200 °C, the lower heating value (LHV) increased from 11.38 to 12.05 MJ/Nm. The findings primarily confirmed the feasibility of injecting biomass into the CVCF to generate gaseous fuels from waste heat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.163970 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!