Incidence of traumatic brain injury is an important hazard in sports and recreation. Unexpected (blind-sided) impacts with other players, obstacles, and the ground can be particularly dangerous. We believe this is partially due to the lack of muscular activation which would have otherwise provided protective bracing. In this study participants were asked to run on the treadmill while undergoing perturbations applied at the waist which pulled participants in the fore-aft and lateral directions. To determine the effect of unexpected impacts, participants were given a directional audio-visual warning 0.5 s prior to the perturbation in half of the trials and were unwarned in the other half of the trials. Perturbations were given during the start of the stance phase and during the start of the flight phase to examine two distinct points within the locomotor cycle. Muscle activity was monitored in axial muscles before, during, and after the perturbations were given. We hypothesized that the presence of a warning would allow for voluntary axial muscle activity prior to and during perturbations that would provide bracing of the body, and decreased displacement and acceleration of the head compared to unwarned perturbations. Our results indicate that when a warning is given prior to perturbation, the body was displaced significantly less, and the linear acceleration of the head was also significantly lessened in response to some perturbations. The perturbations given in this study caused significant increases in axial muscle activity compared to activity present during control running. We found evidence that cervical and abdominal muscles increased activity in response to the warning and that typically the warned trials displayed a lower reflexive muscle activity response. Additionally, we found a stronger effect of the warnings on muscle activity within the perturbations given during flight phase than those given at stance phase. Results from this study support the hypothesis that knowledge regarding an impending perturbation is used by the neuromuscular system to activate relevant core musculature and provide bracing to the athlete.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.humov.2023.103096DOI Listing

Publication Analysis

Top Keywords

muscle activity
20
axial muscle
12
perturbations
9
prior perturbation
8
half trials
8
stance phase
8
flight phase
8
provide bracing
8
acceleration head
8
activity response
8

Similar Publications

Perivascular adipose tissue: a central player in the triad of diabetes, obesity, and cardiovascular health.

Cardiovasc Diabetol

December 2024

Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.

Perivascular adipose tissue (PVAT) is a dynamic tissue that affects vascular function and cardiovascular health. The connection between PVAT, the immune system, obesity, and vascular disease is complex and plays a pivotal role in the pathogenesis of vascular diseases such as atherosclerosis, hypertension, and vascular inflammation. In cardiometabolic diseases, PVAT becomes a significant source of proflammatory adipokines, leading to increased infiltration of immune cells, in cardiometabolic diseases, PVAT becomes a significant source of proinflammatory adipokines, leading to increased infiltration of immune cells, promoting vascular smooth muscle cell proliferation and migrationpromoting vascular smooth muscle cell proliferation and migration.

View Article and Find Full Text PDF

HIF-1α mediates hypertension and vascular remodeling in sleep apnea via hippo-YAP pathway activation.

Mol Med

December 2024

Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China.

Background: Sleep apnea syndrome (SAS) is associated with hypertension and vascular remodeling. Hypoxia-inducible factor-1α (HIF-1α) and the Hippo-YAP pathway are implicated in these processes, but their specific roles remain unclear. This study investigated the HIF-1α/Hippo-YAP pathway in SAS-related hypertension.

View Article and Find Full Text PDF

Electroacupuncture treatment for sarcopenia: study protocol for a randomized controlled trial.

BMC Complement Med Ther

December 2024

Division of internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Introduction: Sarcopenia is a disease primarily characterized by age-related loss of skeletal muscle mass, muscle strength, and/or decline in physical performance. Sarcopenia has an insidious onset which can cause functional impairment in the body and increase the risk of falls and disability in the elderly. It significantly increases the likelihood of fractures and mortality, severely impairing the quality of life and health of the elderly people.

View Article and Find Full Text PDF

Background: Plant-based foods have reduced protein digestibility and frequently display unbalanced amino acid profiles. Plant-based foods are therefore considered inferior to animal-based foods in their anabolic potential. No study has assessed the anabolic potential of a vegan diet that provides a large variety of plant-based protein sources in older adults.

View Article and Find Full Text PDF

Background: Muscle atrophy after the rupture of a rotator cuff (RC) tendon is a major factor that increases the risk of secondary complications and re-rupture. Metformin, a type 2 diabetes treatment, can be used to modulate intracellular signaling pathways that promote muscle growth. This study aimed to verify whether systemic metformin administration could prevent supraspinatus (SS) atrophy after RC rupture in a rat model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!