Automatic vertebra recognition from magnetic resonance imaging (MRI) is of significance in disease diagnosis and surgical treatment of spinal patients. Although modern methods have achieved remarkable progress, vertebra recognition still faces two challenges in practice: (1) Vertebral appearance challenge: The vertebral repetitive nature causes similar appearance among different vertebrae, while pathological variation causes different appearance among the same vertebrae; (2) Field of view (FOV) challenge: The FOVs of the input MRI images are unpredictable, which exacerbates the appearance challenge because there may be no specific-appearing vertebrae to assist recognition. In this paper, we propose a Feature-cOrrelation-aware history-pReserving-sparse-Coding framEwork (FORCE) to extract highly discriminative features and alleviate these challenges. FORCE is a recognition framework with two elaborated modules: (1) A feature similarity regularization (FSR) module to constrain the features of the vertebrae with the same label (but potentially with different appearances) to be closer in the latent feature space in an Eigenmap-based regularization manner. (2) A cumulative sparse representation (CSR) module to achieve feed-forward sparse coding while preventing historical features from being erased, which leverages both the intrinsic advantages of sparse codes and the historical features for obtaining more discriminative sparse codes encoding each vertebra. These two modules are embedded into the vertebra recognition framework in a plug-and-play manner to improve feature discrimination. FORCE is trained and evaluated on a challenging dataset containing 600 MRI images. The evaluation results show that FORCE achieves high performance in vertebra recognition and outperforms other state-of-the-art methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.106977DOI Listing

Publication Analysis

Top Keywords

vertebra recognition
20
feature-correlation-aware history-preserving-sparse-coding
8
history-preserving-sparse-coding framework
8
automatic vertebra
8
appearance challenge
8
appearance vertebrae
8
mri images
8
recognition framework
8
historical features
8
sparse codes
8

Similar Publications

A 41-year-old man with a history of obesity, hypertension, and smoking suffered from numbness and weakness in both lower limbs. He was diagnosed with ossification of the posterior longitudinal ligament and ligamentum flavum in the cervical and thoracic spine by X-rays, CT, and MRI. The patient underwent laminectomies at T2 and T3 levels, along with posterior fusion from T1 to T4, to address an upper thoracic spine lesion causing sensory deficits up to T5 and gait disturbances.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents a new real-time volumetric free-hand ultrasound imaging system designed to improve 3D imaging for large organs, specifically addressing challenges like long acquisition times and patient movement.
  • The system employs an incremental imaging technique and two tissue segmentation algorithms to enhance feature recognition and visualize spinal anatomy in 3D.
  • Validation tests on various ultrasound models and experiments with scoliosis patients showed promising results, indicating a high correlation with X-ray images and suggesting potential for broader clinical applications.
View Article and Find Full Text PDF
Article Synopsis
  • Spondylo-thoracic dysplasia (STD) is a rare congenital condition that affects the vertebrae and thoracic area, often leading to serious respiratory issues and a high risk of early death in neonates.
  • The text details the case of a one-day-old male newborn with severe respiratory distress and various physical anomalies, including scoliosis and rib deformities, identified through clinical examinations and imaging studies.
  • The baby was diagnosed with STD, received conservative management, and survived past the neonatal period, offering insights into this particular variant of the condition.
View Article and Find Full Text PDF

Background: Aneurysmal subarachnoid hemorrhage (aSAH) is often associated with acute high-pressure hydrocephalus. Less commonly, an acute low-pressure hydrocephalus (ALPH) variant can develop and contribute to increased morbidity. ALPH is particularly challenging to diagnose and manage, as patients present with symptoms of increased intracranial pressure (ICP) despite the absence of corroborating evidence from ICP measurements.

View Article and Find Full Text PDF

AQP3-liposome@GelMA promotes overloaded-induced degenerated disc regeneration via IBSP/ITG αVβ3/AKT pathway.

Int J Biol Macromol

December 2024

Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China; Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China. Electronic address:

Article Synopsis
  • Medical treatments for intervertebral disc degeneration (IDD) focus mainly on symptom relief, while effective regeneration therapies are still needed.
  • Recent findings show a negative correlation between AQP3 levels and disc degeneration, indicating its importance in maintaining disc health.
  • The study introduces a novel liposome-encapsulated AQP3 in GelMA (AQP3-lipo@GelMA) that improves cell recognition and enhances the repair of degenerated discs, showing promise for clinical use.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!