Three-dimensional characteristic chromatogram by online comprehensive two-dimensional liquid chromatography: Application to the identification and differentiation of ginseng from herbal medicines to various Chinese patent medicines.

J Chromatogr A

State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China. Electronic address:

Published: July 2023

One bottleneck problem in the quality control of traditional Chinese medicine (TCM) is the accurate identification of easily confused herbal medicines from Chinese patent medicine (CPM). Ginseng products derived from the multiple parts (e.g., root/rhizome, leaf, and flower bud) of multiple Panax species (P. ginseng, P. quinquefolius, P. notoginseng, P. japonicus, and P. japonicus var. major) are globally popular; however, their authentication is very challenging. Using online comprehensive two-dimensional liquid chromatography (LC × LC), we propose the concept of a three-dimensional characteristic chromatogram (3D CC) by integrating enhanced LC × LC separation and a contour plot that visualizes the stereoscopic chromatographic peaks and examine its performance in authenticating various ginseng products. Targeted at the resolution of 17 ginsenoside markers, an online LC × LC/UV system with a 56 min analysis time was constructed: a CORTECS UPLC Shield RP 18 column running at 0.1 mL/min for the first-dimensional chromatography and a Poroshell SB-Aq column at 2.0 mL/min in shift gradient mode in the second dimension of separation. In particular, ginsenosides Rg1/Re and Rc/Ra1 were well resolved. According to the presence/absence of stereo peaks consistent with the main ginsenoside markers in the 3D CC and the depth of shade (depending on peak volume), it was feasible to use a single method to identify and distinguish among 12 different ginseng species as the drug materials and the use of ginseng simultaneously from 21 CPMs. Conclusively, a practical solution enabling the accurate identification of easily confused TCMs was provided, covering both the drug materials and the compound preparations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2023.464042DOI Listing

Publication Analysis

Top Keywords

three-dimensional characteristic
8
characteristic chromatogram
8
online comprehensive
8
comprehensive two-dimensional
8
two-dimensional liquid
8
liquid chromatography
8
herbal medicines
8
medicines chinese
8
chinese patent
8
accurate identification
8

Similar Publications

Objective: The purpose of this study was to assess the severity of hemifacial spasm (HFS) through quantitative measures that associated it with neurovascular contact (NVC).

Methods: We enrolled 108 HFS patients (63 severe and 45 mild cases) and implemented a human-in-the-loop approach to develop a quantitative NVC feature package. This process involved using interactive segmentation on three-dimensional volumetric interpolated breath-hold examination (VIBE) MR images to delineate vascular and nerve structures.

View Article and Find Full Text PDF

Emerging roles of hyaluronic acid hydrogels in cancer treatment and wound healing: A review.

Int J Biol Macromol

January 2025

Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, No. 89 Xiguan Road, Gaozhou 525299, Guangdong, China. Electronic address:

Hyaluronic acid (HA)-derived hydrogels signify a noticeable development in biomedical uses, especially in cancer treatment and wound repair. Cancer continues to be one of the foremost causes of death globally, with current therapies frequently impeded by lack of specificity, serious side effects, and the emergence of resistance. HA hydrogels, characterized by their distinctive three-dimensional structure, hydrophilic nature, and biocompatibility, create an advanced platform for precise drug delivery, improving therapeutic results while minimizing systemic toxicity.

View Article and Find Full Text PDF

Apolipoprotein E (apoE) polymorphism is associated with different pathologies such as atherosclerosis and Alzheimer's disease. Knowledge of the three-dimensional structure of apoE and isoform-specific structural differences are prerequisites for the rational design of small molecule structure modulators that correct the detrimental effects of pathological isoforms. In this study, cross-linking mass spectrometry (XL-MS) targeting Asp, Glu and Lys residues was used to explore the intramolecular interactions in the E2, E3 and E4 isoforms of apoE.

View Article and Find Full Text PDF

Background: Consequences of osteochondral fractures associated with patellar dislocation can be severe for younger patients. Precise 3-dimensional characterization of fracture location, size, frequency, and radiographic associations remain undefined in this population.

Purpose: (1) To define the topographic characteristics of osteochondral fractures in pediatric and adolescent patients with first-time patellar dislocations and (2) to determine the relationship between these characteristics and radiographic and patient factors.

View Article and Find Full Text PDF

Dielectric waveguides are widely recognized as excellent and versatile components for integrated multifunctional photonic chips, thanks to their strong optical confinement capabilities. In this study, we present a novel semi-tapered depressed-cladding waveguide structure, designed and fabricated using femtosecond laser direct writing technology. The optical guiding performance of this semi-tapered waveguide is systematically analyzed by characterizing its loss characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!