This first-in-human study evaluated RO7122290, a bispecific fusion protein carrying a split trimeric 4-1BB (CD137) ligand and a fibroblast activation protein α (FAP) binding site that costimulates T cells for improved tumor cell killing in FAP-expressing tumors. Patients with advanced or metastatic solid tumors received escalating weekly intravenous doses of RO7122290 as a single agent ( = 65) or in combination with a 1200-milligram fixed dose of the anti-programmed death-ligand 1 (anti-PD-L1) antibody atezolizumab given every 3 weeks ( = 50), across a tested RO7122290 dose range of 5 to 2000 milligrams and 45 to 2000 milligrams, respectively. Three dose-limiting toxicities were reported, two at different RO7122290 single-agent doses (grade 3 febrile neutropenia and grade 3 cytokine release syndrome) and one for the combination (grade 3 pneumonitis). No maximum tolerated dose was identified. The pharmacokinetic profile of RO7122290 suggested nonlinearity in elimination. The observed changes in peripheral and tissue pharmacodynamic (PD) biomarkers were consistent with the postulated mechanism of action. Treatment-induced PD changes included an increase in proliferating and activated T cells in peripheral blood both in the single-agent and combination arms. Increased infiltration of intratumoral CD8 and Ki67CD8 T cells was observed for both treatment regimens, accompanied by the up-regulation of T cell activation genes and gene signatures. Eleven patients experienced a complete or partial response, six of whom were confirmed to be immune checkpoint inhibitor naive. These results support further evaluation of RO7122290 in combination with atezolizumab or other immune-oncology agents for the treatment of solid tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.abp9229DOI Listing

Publication Analysis

Top Keywords

solid tumors
12
first-in-human study
8
fibroblast activation
8
patients advanced
8
2000 milligrams
8
ro7122290
7
study fibroblast
4
activation protein-targeted
4
protein-targeted 4-1bb
4
4-1bb agonist
4

Similar Publications

Purpose: Patient-controlled analgesia (PCA) has been considered for managing cancer pain; however, limited research has been conducted on optimizing continuous infusion rates with PCA. This study aimed to evaluate the efficacy and safety of a method that optimizes background infusion (BI) alongside PCA for titrating intravenous (IV) morphine in managing cancer-related pain.

Methods: Forty-four patients with solid tumors who could not manage pain with oral or transdermal opioid analgesics were randomly assigned in a 1:1 ratio to receive IV morphine through PCA or the conventional method.

View Article and Find Full Text PDF

Purpose: The demographic transition toward aging heralds an increase in the number of geriatric patients with cancer in India. Comprehensive geriatric assessment (CGA) is a sine qua non for treatment planning and shared decision making in these patients. We aimed to study the prevalence of malnutrition and the associated risk factors in geriatric patients with solid organ cancer.

View Article and Find Full Text PDF

Multi-TACs: Targeting Solid Tumors with Multiple Immune Cell Co-engagers.

ACS Chem Biol

January 2025

Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Multiple immune components in the complex and heterogeneous tumor-immune microenvironment (TIME) work cooperatively to promote or impede cancer immunotherapy. Synergistically co-managing multiple immune cells with single agents for advanced antitumor immunity remains desirable but challenging. This In Focus article introduces a triple orthogonal linker (T-Linker)-based multimodal targeting chimera (Multi-TAC) platform, enabling the single-agent-mediated tumor-targeted co-engagement of multiple immune cell types within TIME for potentiated immunotherapy.

View Article and Find Full Text PDF

Hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy for patients with hematologic malignancies and certain solid tumors and nonmalignant hematologic conditions. Both acute kidney injury (AKI) and chronic kidney disease (CKD) occur commonly after HSCT and are associated with significant morbidity and mortality. AKI and CKD in this setting may result from direct effects of the transplant or be caused by pretransplant bone marrow conditioning regimens and/or nephrotoxic agents administered in the post-transplant period.

View Article and Find Full Text PDF

Importance: Although differences in the prevalence of key cancer-specific somatic mutations as a function of genetic ancestry among patients with cancer has been well-established, few studies have addressed the practical clinical implications of these differences for the growing number of biomarker-driven treatments.

Objective: To determine if the approval of precision oncology therapies has benefited patients with cancer from various ancestral backgrounds equally over time.

Design, Setting, And Participants: A retrospective analysis of samples from patients with solid cancers who underwent clinical sequencing using the integrated mutation profiling of actionable cancer targets (MSK-IMPACT) assay between January 2014 and December 2022 was carried out.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!