A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Guidance for good practice in the application of machine learning in development of toxicological quantitative structure-activity relationships (QSARs). | LitMetric

Recent years have seen a substantial growth in the adoption of machine learning approaches for the purposes of quantitative structure-activity relationship (QSAR) development. Such a trend has coincided with desire to see a shifting in the focus of methodology employed within chemical safety assessment: away from traditional reliance upon animal-intensive in vivo protocols, and towards increased application of in silico (or computational) predictive toxicology. With QSAR central amongst techniques applied in this area, the emergence of algorithms trained through machine learning with the objective of toxicity estimation has, quite naturally, arisen. On account of the pattern-recognition capabilities of the underlying methods, the statistical power of the ensuing models is potentially considerable-appropriate for the handling even of vast, heterogeneous datasets. However, such potency comes at a price: this manifesting as the general practical deficits observed with respect to the reproducibility, interpretability and generalisability of the resulting tools. Unsurprisingly, these elements have served to hinder broader uptake (most notably within a regulatory setting). Areas of uncertainty liable to accompany (and hence detract from applicability of) toxicological QSAR have previously been highlighted, accompanied by the forwarding of suggestions for "best practice" aimed at mitigation of their influence. However, the scope of such exercises has remained limited to "classical" QSAR-that conducted through use of linear regression and related techniques, with the adoption of comparatively few features or descriptors. Accordingly, the intention of this study has been to extend the remit of best practice guidance, so as to address concerns specific to employment of machine learning within the field. In doing so, the impact of strategies aimed at enhancing the transparency (feature importance, feature reduction), generalisability (cross-validation) and predictive power (hyperparameter optimisation) of algorithms, trained upon real toxicity data through six common learning approaches, is evaluated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171609PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282924PLOS

Publication Analysis

Top Keywords

machine learning
16
quantitative structure-activity
8
learning approaches
8
algorithms trained
8
learning
5
guidance good
4
good practice
4
practice application
4
machine
4
application machine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!