Construction of 1,3,5-Triazine-Based Prisms and Their Enhanced Solid-State Emissions.

Inorg Chem

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China.

Published: May 2023

In this study, two trigonal prisms based on the 1,3,5-triazine motif ( and ), distinguished by hydrophobic groups, were prepared by the self-assembly of tritopic terpyridine ligands and Zn(II) ions. and exhibited high luminescence efficiencies in the solid state, overcoming the fluorescence quenching of the 1,3,5-triazine group caused by π-π interactions. Notably, and exhibited different luminescence behaviors in the solution state and aggregation state. with 12 alkyl chains exhibited extremely weak fluorescence in a dilute solution, but its fluorescence intensity and photoluminescence quantum yield (PLQY) were significantly enhanced in the aggregated state (with the increase in the water fraction), especially in the solid state. Different from the gradually enhanced efficiency of , the PLQY of gradually decreased with the increase in aggregation but still maintained a high luminescence efficiency. These two complexes exhibited different modes to solve the fluorescence quenching of 1,3,5-triazine in the solid state. The hierarchical self-assembly of exhibited nanorods owing to the hydrophobic interactions of alky chains, while aggregated into spheres under the influence of π-π interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.3c00420DOI Listing

Publication Analysis

Top Keywords

solid state
12
high luminescence
8
fluorescence quenching
8
quenching 135-triazine
8
π-π interactions
8
state
6
exhibited
5
construction 135-triazine-based
4
135-triazine-based prisms
4
prisms enhanced
4

Similar Publications

A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.

View Article and Find Full Text PDF

The development of mechanically robust super-lubrication hydrogel materials with sustained lubricity at high contact pressures is challenging. In this work, inspired by the durable lubricity feature of the earthworm epidermis, a multilevel structural super-lubrication hydrogel (MS-SLH) system, the so-called lubricant self-pumping hydrogel, is developed. The MS-SLH system is manufactured by chemically dissociating a double network hydrogel to generate robust and wrinkled lubrication layer, and then laser etching was used to generate cylindrical texture pores as gland-like pockets for storing lubricants.

View Article and Find Full Text PDF

Metabolic reprogramming, malignant transformation and metastasis: lessons from chronic lymphocytic leukaemia and prostate cancer.

Cancer Lett

January 2025

Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland. Electronic address:

Metabolic reprogramming is a hallmark of cancer, crucial for malignant transformation and metastasis. Chronic lymphocytic leukaemia (CLL) and prostate cancer exhibit similar metabolic adaptations, particularly in glucose and lipid metabolism. Understanding this metabolic plasticity is crucial for identifying mechanisms contributing to metastasis.

View Article and Find Full Text PDF

Polyamide/silica/sodium alginate in-situ composite: Synthesis and application in electrochemical probing for Pb/Cd.

Int J Biol Macromol

January 2025

College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China; Engineering Research Center of Oilfield Chemistry, Ministry of Education, Chengdu 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, PR China. Electronic address:

In this study, polyamide/silica/sodium alginate (SA) composite (PA-Si-SA) was successfully prepared in one-step benzoxazine-isocyanide chemistry (BIC)/sol-gel process at room temperature. The chemical structure and fundamental properties of PA-Si-SA were characterized by FT-IR, solid-state C NMR, XPS, XRD, SEM, BET and TG, etc. The presence of anionic SA and diverse N, O-containing functional segments (amide, tertiary amine, alkyl/phenol -OH, Si-O-Si, and COO) in PA-Si-SA endows it synergistic complexation capability toward Pb and Cd.

View Article and Find Full Text PDF

In agricultural and waste management systems, dairy manure wastewater is often recycled for irrigation. However, a key challenge lies in handling suspended solids (SS) and effectively dewatering sludge. To address this, an innovative polycationic soybean protein-based flocculant (SPI+) was developed and applied to enhance flocculation and sludge dewatering efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!