With aging, the incidence of age-related diseases increases. Hence, age-related diseases are inevitable. However, the mechanisms by which aging leads to the onset and progression of age-related diseases remain unclear. It has been reported that inflammation is closely associated with age-related diseases and that the cGAS-STING signaling pathway, which can sense the aberrant presence of cytosolic DNA during aging and induce an inflammatory response, is an important mediator of inflammation in age-related diseases. With a better understanding of the structure and molecular biology of the cGAS-STING signaling axis, numerous selective inhibitors and agonists targeting the cGAS-STING pathway in human age-related diseases have been developed to modulate inflammatory responses. Here, we provide a narrative review of the activity of the cGAS-STING pathway in age-related diseases and discuss its general mechanisms in the onset and progression of age-related diseases. In addition, we outline treatments targeting the cGAS-STING pathway, which may constitute a potential therapeutic alternative for age-related diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10389832 | PMC |
http://dx.doi.org/10.14336/AD.2023.0117 | DOI Listing |
Drug Deliv Transl Res
January 2025
Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
The global prevalence of Parkinson's Disease (PD) is on the rise, driven by an ageing population and ongoing environmental conditions. To gain a better understanding of PD pathogenesis, it is essential to consider its relationship with the ageing process, as ageing stands out as the most significant risk factor for this neurodegenerative condition. PD risk factors encompass genetic predisposition, exposure to environmental toxins, and lifestyle influences, collectively increasing the chance of PD development.
View Article and Find Full Text PDFAIDS
March 2025
Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy.
Antiretroviral therapy (ART) is the most effective therapeutic intervention for HIV infection. With improved survival, comorbidities, including neuropsychiatric and HIV-associated neurocognitive impairment (NCI) are of increasing concern to aging people with HIV (PWH). The clinical features and the inter-individual variability of the aging process confound the elucidation of the diagnosis and underlying mechanisms of cognitive dysfunction in aging PWH.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.
Background: Type 2 Diabetes Mellitus (T2DM) represents a major global health challenge, marked by chronic hyperglycemia, insulin resistance, and immune system dysfunction. Immune cells, including T cells and monocytes, play a pivotal role in driving systemic inflammation in T2DM; however, the underlying single-cell mechanisms remain inadequately defined.
Methods: Single-cell RNA sequencing of peripheral blood mononuclear cells (PBMCs) from 37 patients with T2DM and 11 healthy controls (HC) was conducted.
Front Immunol
January 2025
Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, Ulm, Germany.
Background: The complement system is locally activated after joint injuries and leads to the deposition of the terminal complement complex (TCC). Sublytic TCC deposition is associated with phenotypical alterations of human articular chondrocytes (hAC) and enhanced release of inflammatory cytokines. Chronic inflammation is a known driver of chondrosenescence in osteoarthritis (OA).
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Department of Health Promotion Sciences, Graduated School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Japan.
Cell therapy of skeletal muscles is a promising approach for the prevention of muscular diseases and age-related muscle atrophy. However, cell transplantation to treat muscle atrophy that does not involve disease, such as sarcopenia, is considered impossible because externally injected cells rarely engraft into non-injured muscle tissue. Additionally, skeletal muscle-specific somatic stem cells, called satellite cells, lose their ability to adhere to tissue after being cultured and transforming into myoblasts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!