An optical nanoelectromechanical platform relied on a SRR metamaterial system is presented in this paper as a label-free biosensor. This structure includes a flexible BioNEMS (Bio-Nano-Electro-Mechanical Systems) transducer and a proposed SRR metamaterials for detection of biological changes. Metamaterial cells consist of two parts which are coupled with an air gap distance. A functionalized BioNEMS beam supports one part of the proposed metamaterial cells. When patient samples including target analytes is exposed to the NEMS beam surface, the specific bio-interactions are happened and the energy (surface stress type) is released on the surface. This energy, which is induced only to the one side of the movable beam, causes a differential surface stress and thus displaces the nanomechanical beam. As a result, the air distance between two separated cells of the metamaterial unit is changed. This leads to varying the cell coupling effect which excites plasmon modes in a different wavelength. Therefore, biological quantities can be measured by detecting the resonance wavelength changes. Moreover, analyzing the device by various approaches results its functional characteristics as follows: detection sensitivity of 4251 nm/RIU, figure of merit (FOM) of 500.1 RIU , mechanical sensitivity of [Formula: see text]/Nm and resonant frequency of 17.1 kHz. Consequently, this mechanism is important for label-free biosensing due to its high potential for sensitive and quantitative detection of target analytes which leads to accurate diagnosis of diseases or identification of drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNB.2023.3275137 | DOI Listing |
Sensors (Basel)
January 2025
Department of Electronics and Communication Engineering, SRM University, Guntur 522240, Andhra Pradesh, India.
We propose herein a metamaterial (MM) dual-band THz sensor for various biomedical sensing applications. An MM is a material engineered to have a particular property that is rarely observed in naturally occurring materials with an aperiodic subwavelength arrangement. MM properties across a wide range of frequencies, like high sensitivity and quality factors, remain challenging to obtain.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Engineering (FOE), Multimedia University (MMU), Cyberjaya, Selangor, Malaysia.
Cancer and its diverse variations pose one of the most significant threats to human health and well-being. One of the most aggressive forms is blood cancer, originating from bone marrow cells and disrupting the production of normal blood cells. The incidence of blood cancer is steadily increasing, driven by both genetic and environmental factors.
View Article and Find Full Text PDFNat Commun
January 2025
Advanced Manufacturing and Metamaterials Laboratory, Department of Material Science and Engineering, University of California, Berkeley, CA, USA.
The demand for lightweight antennas in 5 G/6 G communication, wearables, and aerospace applications is rapidly growing. However, standard manufacturing techniques are limited in structural complexity and easy integration of multiple material classes. Here we introduce charge programmed multi-material additive manufacturing platform, offering unparalleled flexibility in antenna design and the capability for rapid printing of intricate antenna structures that are unprecedented or necessitate a series of fabrication routes.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
Lattice structures are an innovative solution to increase the strength-to-weight ratio of a structure. In this study, two polymeric hybrid lattice structures-"FRB" (a heterogenous structure which is indeed a BCC structure reinforced by FCC unit cells dispersed in a way to form a chessboard pattern in each layer) and the "Multifunctional" (a homogenous structure whose unit cells are a combination of FCC and BCC unit cells where their central nodes are connected)-are proposed, fabricated via liquid crystal display 3D printing technique, and their mechanical characteristics are evaluated under quasi-static loading, experimentally and numerically. The results indicate a 15.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Electrical Engineering, Faculty of Engineering, University of Zabol, 9861335856 Zabol, Iran.
In this paper, we have investigated a hybrid metamaterial seven-layer solar absorber. The absorber has remarkable characteristics, including ultra-broadband perfect absorption capability, near-perfect absorption at wide angles, and insensitivity to polarization. The structure exhibits an average absorption of 98.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!