Recent studies have shown that recommender systems are vulnerable, and it is easy for attackers to inject well-designed malicious profiles into the system, resulting in biased recommendations. We cannot deprive these data's injection right and deny their existence's rationality, making it imperative to study recommendation robustness. Despite impressive emerging work, threat assessment of the bi-level poisoning problem and the imperceptibility of poisoning users remain key challenges to be solved. To this end, we propose Infmix, an efficient poisoning attack strategy. Specifically, Infmix consists of an influence-based threat estimator and a user generator, Usermix. First, the influence-based estimator can efficiently evaluate the user's harm to the recommender system without retraining, which is challenging for existing attacks. Second, Usermix, a distribution-agnostic generator, can generate unnoticeable fake data even with a few known users. Under the guidance of the threat estimator, Infmix can select the users with large attacking impacts from the quasi-real candidates generated by Usermix. Extensive experiments demonstrate Infmix's superiority by attacking six recommendation systems with four real datasets. Additionally, we propose a novel defense strategy, adversarial poisoning training (APT). It mimics the poisoning process by injecting fake users (ERM users) committed to minimizing empirical risk to build a robust system. Similar to Infmix, we also utilize the influence function to solve the bi-level optimization challenge of generating ERM users. Although the idea of "fighting fire with fire" in APT seems counterintuitive, we prove its effectiveness in improving recommendation robustness through theoretical analysis and empirical experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2023.3274759DOI Listing

Publication Analysis

Top Keywords

recommender systems
8
recommendation robustness
8
threat estimator
8
erm users
8
poisoning
6
users
6
influence-driven data
4
data poisoning
4
poisoning robust
4
robust recommender
4

Similar Publications

Designing Health Recommender Systems to Promote Health Equity: A Socioecological Perspective.

J Med Internet Res

January 2025

Department High-Tech Business and Entrepreneurship Section, Industrial Engineering and Business Information Systems, University of Twente, Enschede, Overijssel, Netherlands.

Health recommender systems (HRS) have the capability to improve human-centered care and prevention by personalizing content, such as health interventions or health information. HRS, an emerging and developing field, can play a unique role in the digital health field as they can offer relevant recommendations, not only based on what users themselves prefer and may be receptive to, but also using data about wider spheres of influence over human behavior, including peers, families, communities, and societies. We identify and discuss how HRS could play a unique role in decreasing health inequities.

View Article and Find Full Text PDF

Approval-based shortlisting.

Soc Choice Welfare

August 2023

DBAI, TU Wien, Vienna, Austria.

Unlabelled: Shortlisting is the task of reducing a long list of alternatives to a (smaller) set of best or most suitable alternatives. Shortlisting is often used in the nomination process of awards or in recommender systems to display featured objects. In this paper, we analyze shortlisting methods that are based on approval data, a common type of preferences.

View Article and Find Full Text PDF

Identify potential drug candidates within a high-quality compound search space.

Brief Bioinform

November 2024

The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100, Minjiang Avenue, Smart New Town, Quzhou, Zhejiang Province, 324000, China.

The identification of potential effective drug candidates is a fundamental step in new drug discovery, with profound implications for pharmaceutical research and the healthcare sector. While many computational methods have been developed for such predictions and have yielded promising results, two challenges persist: (i) The cold start problem of new drugs, which increases the difficulty of prediction due to lack of historical data or prior knowledge. (ii) The vastness of the compound search space for potential drug candidates.

View Article and Find Full Text PDF

Hybrid Quality-Based Recommender Systems: A Systematic Literature Review.

J Imaging

January 2025

Laboratory Health Systemic Process (P2S), UR4129, University Claude Bernard Lyon 1, University of Lyon, 69008 Lyon, France.

As technology develops, consumer behavior and how people search for what they want are constantly evolving. Online shopping has fundamentally changed the e-commerce industry. Although there are more products available than ever before, only a small portion of them are noticed; as a result, a few items gain disproportionate attention.

View Article and Find Full Text PDF

Background: Interpretability is a topical question in recommender systems, especially in healthcare applications. An interpretable classifier quantifies the importance of each input feature for the predicted item-user association in a non-ambiguous fashion.

Results: We introduce the novel Joint Embedding Learning-classifier for improved Interpretability (JELI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!