Purpose: To reveal the molecular mechanism underlying degeneration in human retinal pigment epithelial (hRPE) cells with dysfunctional mitochondrial homeostasis.

Methods: The expression of recently identified miR-494-3p in extracellular vesicles (EV) released from induced-pluripotential-stem-cell-derived human RPE (iPS-hRPE), during coculture with macrophages (Mps) was investigated in iPS-hRPE and ARPE cells differentiated in the presence of nicotinamide (Nic-ARPE). The expression of phosphatase and tensin homolog (PTEN), sirtuin3 (SIRT3), and mitochondrial marker proteins before and after the transfection of miR-494-3p inhibitor and mimic, and the changes in mitochondrial metabolism, membrane potential, and oxidative phosphorylation (OXPHOS) were monitored.

Results: Compared with senescent dedifferentiated ARPE19 cells, iPS-hRPE and Nic-ARPE cells expressed elevated levels of mitochondrial marker proteins but a repressed cellular miR-494-3p level. The expression of target proteins of miR-494-3p, PTEN, and SIRT3 was upregulated along with the differentiation disposition of these RPE cells. The ratio of PTEN/SIRT3 in de-differentiated ARPE19 cells was surprisingly elevated by around 20 times compared with that in iPS-hRPE and Nic-ARPE cells. The novel molecular interplay of EV miR-494-3p either with mitochondria selective SIRT3 or organelle nonselective PTEN was found to participate in the degeneration of hRPE cells by inducing mitochondrial dysfunctions and repressed OXPHOS, mitochondrial membrane potential, and ATP and NAD+ production.

Conclusions: Our results demonstrate a clear causal link between miR-494-3p and hRPE cell degeneration via the regulation of mitochondrial integrity. EV miR-494-3p may play a pivotal role in pathogenic spreading of degenerated hRPE cells from the local perifovea throughout the macula.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10179576PMC
http://dx.doi.org/10.1167/iovs.64.5.9DOI Listing

Publication Analysis

Top Keywords

hrpe cells
12
cells
9
mir-494-3p
8
mitochondrial marker
8
marker proteins
8
membrane potential
8
arpe19 cells
8
ips-hrpe nic-arpe
8
nic-arpe cells
8
mitochondrial
7

Similar Publications

Article Synopsis
  • Regulation of visual system function relies on precise gene regulation, with dysregulation of miRNAs like MIR-96 linked to eye disorders, including diabetic retinopathy (DR) and glaucoma.
  • MIR-96, found in the retina, affects inflammatory and insulin signaling pathways and its role in gene expression was studied by overexpressing it in human retinal pigment epithelial cells, revealing varying effects on target gene expression.
  • The results indicated that changes in the expression of IRS2, a key gene, are connected to disrupted retinal insulin signaling in DR, suggesting that the IRS/PI3K/AKT/VEGF pathway could be a potential treatment target for diabetic complications in the eye.
View Article and Find Full Text PDF

Tenascin-C induces transdifferentiation of retinal pigment epithelial cells in proliferative vitreoretinopathy.

Exp Eye Res

November 2024

Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China. Electronic address:

Proliferation and transdifferentiation of the retinal pigment epithelium (RPE) are hallmarks of proliferative vitreoretinopathy (PVR); however, the critical regulators of this process remain to be elucidated. Here, we investigated the role of tenascin-C in PVR development. In vitro, exposure of human ARPE-19 (hRPE) cells to TGF-β2 increased tenascin-C expression.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) causes severe blindness in the elderly due to choroidal neovascularization (CNV), which results from the dysfunction of the retinal pigment epithelium (RPE). While normal RPE depends exclusively on mitochondrial oxidative phosphorylation for energy production, the inflammatory conditions associated with metabolic reprogramming of the RPE play a pivotal role in CNV. Although mitochondrial pyruvate dehydrogenase kinase (PDK) is a central node of energy metabolism, its role in the development of CNV in neovascular AMD has not been investigated.

View Article and Find Full Text PDF

Purpose: To investigate the short-term effects of low-level lasers (LLLs; also known as low-power laser therapy) on the structure, genetic, and phenotype of cultured human retinal pigment epithelial (hRPE) cells from both adult and neonatal sources.

Methods: Cultivated adult and neonatal hRPE cells were irradiated with two types of LLL (630 nm and 780 nm), 1 min daily for five consecutive days.

Results: An increase in doubling time was observed in 630 nm-irradiated adult hRPE cells ( = 0.

View Article and Find Full Text PDF

Aim: To examine the regulatory role of microRNA-204 (miR-204) on silent information regulator 1 (SIRT1) and vascular endothelial growth factor (VEGF) under high-glucose-induced metabolic memory in human retinal pigment epithelial (hRPE) cells.

Methods: Cells were cultured with either normal (5 mmol/L) or high D-glucose (25 mmol/L) concentrations for 8d to establish control and high-glucose groups, respectively. To induce metabolic memory, cells were cultured with 25 mmol/L D-glucose for 4d followed by culture with 5 mmol/L D-glucose for 4d.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!