The true value of the contact angle between a liquid and a solid is a thorny problem in capillary microfluidics. The Lucas-Washburn-Rideal (LWR) law assumes a constant contact angle during fluid penetration. However, recent experimental studies have shown lower liquid velocities than predicted by the LWR equation, which are attributed to a velocity-dependent dynamic contact angle that is larger than its static value. Inspection of fluid penetration in closed channels has confirmed that a dynamic angle is needed in the LWR equation. In this work, the dynamic contact angle in an open channel configuration is investigated using experimental data obtained with a range of liquids, aqueous and organic, and a PMMA substrate. We demonstrate that a dynamic contact angle must be used to explain the early stages of fluid penetration, i.e., at the start of the viscous regime, when flow velocities are sufficiently high. Moreover, the open channel configuration, with its free surface, enhances the effect of the dynamic contact angle, making its inclusion even more important. We found that for the liquids in our study, the molecular-kinetic theory (MKT) is the most accurate in predicting the effect of the dynamic contact angle on liquid penetration in open channels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168213PMC
http://dx.doi.org/10.1101/2023.04.24.537941DOI Listing

Publication Analysis

Top Keywords

contact angle
32
dynamic contact
24
fluid penetration
12
angle
9
open channels
8
angle liquid
8
lwr equation
8
open channel
8
channel configuration
8
dynamic
7

Similar Publications

To investigate the effect of the filter device on the cleanliness of molten steel and the flow field distribution within the tundish. The tundish filters were designed into five groups of pores with 20°, 25°, 30°, 35° and 40° elevation angles, and the flow field distribution and impurity removal rate of molten steel were calculated by Discrete Phase Model (DPM). The results showed that the removal rate of impurity in the molten steel could be significantly improved by using the tundish filter with elevation angle.

View Article and Find Full Text PDF

Firearm-related scenarios can be highly complex, involving multiple shooters, firearms, types of ammunition, victims, and various impact zones. Obtaining the maximum amount of information to connect each piece of the puzzle is crucial for resolving these cases. Currently, new tools are being developed in the forensic field that facilitate both fieldwork and laboratory analysis, enabling the estimation of trajectories, identification of shooters, and more.

View Article and Find Full Text PDF

The effective prevention and treatment of anastomotic leakage after intestinal anastomosis for colorectal diseases is still a major clinical challenge. In order to assist intestinal anastomosis healing and avoid anastomotic leakage caused by high tension, low blood supply or infection, we designed a double-layer nanofiber intestinal anastomosis scaffold, which was composed of electrospun PTMC/PHA nanofibers as the main layer, and electrospun PVA/OHA-Gs nanofibers with antibacterial properties as the antibacterial surface layer. This double-layer scaffold has good toughness, its maximum tensile force value could reach 8 N, elongation could reach 400 %, and it has hydrophilic properties, and its contact angle was about 60°.

View Article and Find Full Text PDF

Physicochemical Characterization of Gallstone Surfaces to Predict Their Interaction with Salmonella Typhi.

Curr Microbiol

January 2025

Industrial and Surface Engineering Laboratory, Bioprocess and Biointerfaces Team, Department of Life Sciences, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco.

Salmonella Typhi can adhere to and build biofilms on the surface of gallstones causing abnormal gallbladder mucosa, which could lead to carcinogenesis. The surface physicochemical properties of microbial cells and materials have been shown to play a crucial role in adhesion. Therefore, the purpose of this study was to investigate, for the first time, the surface properties of nine gallstones and to evaluate the influence of these parameters on the theoretical adhesion of S.

View Article and Find Full Text PDF

In response to the rotary ploughing equipment in the stubble land to implement protective operations, the stubble is large in number and strong in toughness, not easy to crush, resulting in rotary ploughing equipment to produce entanglement and increased resistance to rotary ploughing and other issues. In this study, researchers designed a bionic rotary tillage blade (B-RTB) based on the bionic structural equations of the Marmota claw. A straw-soil complex shear performance test was conducted to investigate the effect of straw on soil shear strength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!