Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
CRISPR-Cas systems are an adaptive immune system in bacteria and archaea that utilize CRISPR RNA-guided surveillance complexes to target complementary RNA or DNA for destruction. Target RNA cleavage at regular intervals is characteristic of type III effector complexes; however, the mechanism has remained enigmatic. Here, we determine the structures of the type III-Dv complex, an evolutionary intermediate in type III effectors, in pre- and post-cleavage states, which show metal ion coordination in the active sites. Using structural, biochemical, and quantum/classical molecular dynamics simulation, we reveal the structure and dynamics of the three catalytic sites, where a 2'-OH of the ribose on the target RNA acts as a nucleophile for in line self-cleavage of the upstream scissile phosphate. Strikingly, the arrangement at the catalytic residues of most type III complexes resembles the active site of ribozymes, including the hammerhead, pistol, and Varkud satellite ribozymes. Thus, type III CRISPR-Cas complexes function as protein-assisted ribozymes, and their programmable nature has important implications for how these complexes could be repurposed for applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168453 | PMC |
http://dx.doi.org/10.21203/rs.3.rs-2837968/v1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!