Macrophages are indispensable for proper immune surveillance and inflammatory regulation. They also exhibit dramatic phenotypic plasticity and are highly responsive to their local microenvironment, which includes the extracellular matrix (ECM). The present work demonstrates that two fibrous ECM glycoproteins, fibronectin (FN) and laminin (LAM), elicit distinct morphological and migratory responses to macrophages in 2D environments. Laminin 111 inhibits macrophage cell spreading, but drives them to migrate rapidly and less persistently compared to cells on fibronectin. Differential integrin engagement and ROCK/myosin II organization helps explain why macrophages alter their morphology and migration character on these two ECM components. The present study also demonstrates that laminin 111 exerts a suppressive effect toward fibronectin, as macrophages plated on a LAM/FN mixture adopt a morphology and migratory character almost identical to LAM alone. This suggests that distinct responses can be initiated downstream of receptor-ECM engagement, and that one component of the microenvironment may affect the cell's ability to sense another. Overall, macrophages appear intrinsically poised to rapidly switch between distinct migratory modes based on their ECM environments. The role of ECM composition in dictating motile and inflammatory responses in 3D and contexts warrants further study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168351 | PMC |
http://dx.doi.org/10.1101/2023.04.27.538597 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!