is a gram-positive pathogen responsible for life-threatening infections that are difficult to treat due to antibiotic resistance. The identification of new vulnerabilities in essential processes like cell envelope biogenesis represents a promising avenue towards the development of anti-staphylococcal therapies that overcome resistance. To this end, we performed cell sorting-based enrichments for mutants with defects in envelope integrity and cell division. We identified many known envelope biogenesis factors as well as a large collection of new factors with roles in this process. Mutants inactivated for one of the hits, the uncharacterized SAOUHSC_01855 protein, displayed aberrant membrane invaginations and multiple FtsZ cytokinetic ring structures. This factor is broadly distributed among Firmicutes, and its inactivation in similarly caused division and membrane defects. We therefore renamed the protein FacZ (Firmicute-associated coordinator of Z-rings). In , inactivation of the conserved cell division protein GpsB suppressed the division and morphological defects of mutants. Additionally, FacZ and GpsB were found to interact directly in a purified system. Thus, FacZ is a novel antagonist of GpsB function with a conserved role in controlling division site placement in and other Firmicutes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168275 | PMC |
http://dx.doi.org/10.1101/2023.04.24.538170 | DOI Listing |
BMC Musculoskelet Disord
January 2025
Division of Orthopedic Surgery, Changhua Christian Hospital, Changhua, Taiwan.
Background: Despite advancements in prosthetic designs and surgical techniques, patellar dislocation remains a rare but significant complication following total knee arthroplasty, with an incidence ranging between 0.15% and 0.5%.
View Article and Find Full Text PDFPediatr Res
January 2025
Center for Genetic Medicine, Children's National Research Institute, Washington, DC, USA.
Background: Prenatally transmitted viruses can cause severe damage to the developing brain. There is unexplained variability in prenatal brain injury and postnatal neurodevelopmental outcomes, suggesting disease modifiers. Of note, prenatal Zika infection can cause a spectrum of neurodevelopmental disorders, including congenital Zika syndrome.
View Article and Find Full Text PDFNat Commun
January 2025
Center for Early Detection and Interception of Blood Cancers, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Early therapeutic intervention in high-risk smoldering multiple myeloma (HR-SMM) has shown benefits, however, no studies have assessed whether biochemical progression or response depth predicts long-term outcomes. The single-arm I-PRISM phase II trial (NCT02916771) evaluated ixazomib, lenalidomide, and dexamethasone in 55 patients with HR-SMM. The primary endpoint, median progression-free survival (PFS), was not reached (NR) (95% CI: 57.
View Article and Find Full Text PDFJ Nucl Med
January 2025
Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California.
High-volume disease (HVD) and low-volume disease (LVD) definitions in metastatic hormone-sensitive prostate cancer (mHSPC) patients are based on conventional imaging (CI) (CT/MRI with bone scan [BS]) according to CHAARTED criteria. HVD and LVD definitions are associated with overall survival and are used for treatment decisions. It remains unknown how these definitions transfer to prostate-specific membrane antigen (PSMA) PET imaging.
View Article and Find Full Text PDFCell
December 2024
Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94148, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94115, USA. Electronic address:
Three proton-sensing G protein-coupled receptors (GPCRs)-GPR4, GPR65, and GPR68-respond to extracellular pH to regulate diverse physiology. How protons activate these receptors is poorly understood. We determined cryogenic-electron microscopy (cryo-EM) structures of each receptor to understand the spatial arrangement of proton-sensing residues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!