Purpose: While crudely quantified lipoproteins have been reported to affect the risk of breast cancer, the effects of subclass lipoproteins characterized by particle size, particle number, and lipidomes remain unknown.
Methods: Utilizing nuclear magnetic resonance-based GWAS of 85 lipoprotein traits, we performed two-sample univariable Mendelian randomization (MR) to evaluate the causal relationship between each trait with breast cancer (Ncase/control = 133,384/113,789) and with its estrogen receptor (ER) subtypes. Then, we applied multivariable MR to investigate the independent effects considering both general and central obesity.
Results: In univariable MR, a heterogeneous effect of subclass high-density lipoproteins (HDL) was observed, in which small HDL traits (ORs ranged from 0.89 to 0.94) were associated with a decreased risk of breast cancer while non-small HDLs traits (OR ranged from 1.04 to 1.08) were associated with an increased risk of breast cancer. Very-low-density lipoproteins (VLDL) traits and serum total triglycerides (TG) were associated with a decreased risk of breast cancer (ORs ranged from 0.88 to 0.94). Similar association patterns were found for ER + subtype. In multivariable MR, only the protective effects of small HDL, VLDL and TG on ER + subtype remained significant.
Conclusion: We identified a heterogeneous effect of subclass HDLs and a consistent protective effect of VLDL on breast cancer. Only the effects of small HDL and VLDL on ER + subtype remained robust after controlling for obesity. These findings provide new insight into the causal pathway underlying lipoproteins and breast cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10549-023-06930-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!