Doxorubicin (DOX) is a powerful chemotherapeutic agent used in many types of malignancies. However, its use results in testicular damage. DOX-induced testicular damage results in low level of serum testosterone which may affect cognitive function. The current study investigated the protective effect of liraglutide (50, 100 μg/kg/day) in testicular toxicity and the consequent cognitive impairment induced by DOX. DOX treatment reduced sperm count (62%) and sperm motility (53%) and increased sperm abnormalities (786%), as compared to control group. DOX also reduced serum testosterone level (85%) and the gene expression of testicular 3β-HSD (68%) and 17β-HSD (82%). Moreover, it increased testicular oxidative stress (MDA and GSH) by 103% and 59%, respectively, apoptotic (caspase-3 and P53) by 996% and 480%, respectively. In addition, DOX resulted in increasing autophagic markers including PAKT, mTOR, and LC3 by 48%, 56%, and 640%, respectively. Additionally, rats' behavior in Y-maze (60%) and passive avoidance task (85%) was disrupted. The histopathological results of testis and brain supported the biochemical findings. Treatment with liraglutide (100 μg/kg/day) significantly abrogated DOX-induced testicular damage by restoring testicular architecture, increasing sperm count (136%) and sperm motility (106%), and decreasing sperm abnormalities (84%) as compared to DOX group. Furthermore, liraglutide increased serum testosterone (500%) and steroidogenesis enzymes 3β-HSD (105%) and 17β-HSD (181%) along with suppressing oxidative stress (MDA and GSH) by 23% and 85%, respectively; apoptotic (caspase-3 and P53) by 59% and55%, respectively; and autophagic markers including PAKT, mTOR, and LC3 by 48%, 97%, and 60%, respectively. Moreover, it enhanced the memory functions in passive avoidance and Y-maze tests (132%). In conclusion, liraglutide is a putative agent for protection against DOX-induced testicular toxicity and cognitive impairment through its antioxidant, antiapoptotic, and antiautophagic effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567954PMC
http://dx.doi.org/10.1007/s00210-023-02504-7DOI Listing

Publication Analysis

Top Keywords

testicular toxicity
12
testicular damage
12
dox-induced testicular
12
serum testosterone
12
testicular
9
liraglutide 100 μg/kg/day
8
cognitive impairment
8
sperm count
8
sperm motility
8
sperm abnormalities
8

Similar Publications

Background: Platinum-based chemotherapy provides curative treatment to more than 95% of patients with testicular germ cell tumor but it has negative cardiometabolic and neurological effects. Regular exercise can alleviate late chemotherapy-related toxicities. We examined the impact of a 6-month supervised aerobic-strength training on cognitive and cardiometabolic health and residual level of platinum in cancer survivors.

View Article and Find Full Text PDF

Arsenic in drinking water has been associated with an increased risk of health concerns. This metalloid is ingested and distributed throughout the body, accumulating in several organs, including the testis. In this organ, arsenic disturbs steroidogenesis and spermatogenesis and affects male fertility.

View Article and Find Full Text PDF

Background: The risk of cognitive decline in cancer survivors may be increased by platinum-based chemotherapy. Evidence indicates that physical exercise has a potential to reduce chemotherapy-related toxicity. The aim of this study was to assess effects of a 6-month aerobic-strength training on cognitive functions, metabolic flexibility, anthropometric parameters and physical fitness in testicular germ cell tumor (TGCT) survivors, treated with platinum-based chemotherapy.

View Article and Find Full Text PDF

Triptolide (TP) is a diterpenoid compound extracted from the traditional Chinese medicinal herb Tripterygium wilfordii. It has antitumor and anti-inflammatory effects and stimulates immunity. However, its serious side effects, especially reproductive toxicity, limit its clinical application.

View Article and Find Full Text PDF

Cisplatin (CIS) is a widely used chemotherapeutic agent, but its side effects, such as oxidative stress, inflammation, and apoptosis, often lead to male reproductive damage. Oxidative stress, primarily caused by the excessive generation of reactive oxygen species (ROS), plays a critical role in disrupting testicular homeostasis, resulting in spermatogenic impairment and tissue injury. L-cysteine (CYS), a semi-essential amino acid with potent antioxidant and anti-inflammatory properties, may offer protection against CIS-induced oxidative damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!