Objective: To test the diagnostic performance of a deep-learning Two-Stream Compare and Contrast Network (TSCCN) model for differentiating benign and malignant vertebral compression fractures (VCFs) based on MRI.

Methods: We tested a deep-learning system in 123 benign and 86 malignant VCFs. The median sagittal T1-weighted images (T1WI), T2-weighted images with fat suppression (T2WI-FS), and a combination of both (thereafter, T1WI/T2WI-FS) were used to validate TSCCN. The receiver operator characteristic (ROC) curve was analyzed to evaluate the performance of TSCCN. The accuracy, sensitivity, and specificity of TSCCN in differentiating benign and malignant VCFs were calculated and compared with radiologists' assessments. Intraclass correlation coefficients (ICCs) were tested to find intra- and inter-observer agreement of radiologists in differentiating malignant from benign VCFs.

Results: The AUC of the ROC plots of TSCCN according to T1WI, T2WI-FS, and T1WI/T2WI-FS images were 99.2%, 91.7%, and 98.2%, respectively. The accuracy of T1W, T2WI-FS, and T1W/T2WI-FS based on TSCCN was 95.2%, 90.4%, and 96.2%, respectively, greater than that achieved by radiologists. Further, the specificity of T1W, T2WI-FS, and T1W/T2WI-FS based on TSCCN was higher at 98.4%, 94.3%, and 99.2% than that achieved by radiologists. The intra- and inter-observer agreements of radiologists were 0.79-0.85 and 0.79-0.80 for T1WI, 0.65-0.72 and 0.70-0.74 for T2WI-FS, and 0.83-0.88 and 0.83-0.84 for T1WI/T2WI-FS.

Conclusion: The TSCCN model showed better diagnostic performance than radiologists for automatically identifying benign or malignant VCFs, and is a potentially helpful tool for future clinical application.

Clinical Relevance Statement: TSCCN-assisted MRI has shown superior performance in distinguishing benign and malignant vertebral compression fractures compared to radiologists. This technology has the value to enhance diagnostic accuracy, sensitivity, and specificity. Further integration into clinical practice is required to optimize patient management.

Key Points: • The Two-Stream Compare and Contrast Network (TSCCN) model showed better diagnostic performance than radiologists for identifying benign vs malignant vertebral compression fractures. • The processing of TSCCN is fast and stable, better than the subjective evaluation by radiologists in diagnosing vertebral compression fractures. • The TSCCN model provides options for developing a fully automated, streamlined artificial intelligence diagnostic tool.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00330-023-09713-xDOI Listing

Publication Analysis

Top Keywords

benign malignant
28
vertebral compression
20
compression fractures
20
malignant vertebral
16
tsccn model
16
diagnostic performance
12
malignant vcfs
12
tsccn
11
benign
8
two-stream compare
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!