Experimental results and computational insights explain the key role of transition-metal catalysis/Brønsted acid synergism in the achievement of the sequential regioselective direct heteroarylation/cyclocondensation reactions of β-(2-aminophenyl)-α,β-ynones with a variety of electron-rich aromatic heterocyclic/arenes to afford quinoline-(hetero)aromatic hybrids. The first approach to the synthesis of 4-(1-pyrrol-2-yl)quinolines is described. The effectiveness of various transition metals is compared.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.3c00137 | DOI Listing |
Chemistry
January 2025
Shihezi University, School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, North 4th Road, 832003, Shihezi, CHINA.
An N,N,N-type Cu(Ⅱ) complex-catalyzed desaturation method for converting alcohols, ketones, lactones, and lactams to their α,β-unsaturated carbonyl compounds is reported. The dehydrogenation reaction can be conducted with a green terminal oxidant O2 without requiring strong acid/base or stoichiometric oxidants. The Cu(Ⅱ) complex/TEMPO/O2 system uses a non-noble catalyst, and a green terminal oxidant as well as demonstrates high activity and functional group tolerance.
View Article and Find Full Text PDFRespir Res
January 2025
Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, 150081, People's Republic of China.
Background: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease, influenced by both environmental and genetic factors. Single nucleotide polymorphism (SNP) in the human genome may influence the risk of developing COPD and the response to treatment. We assessed the effects of gene polymorphism of inflammatory and immune-active factors and gene-environment interaction on risk of COPD in middle-aged and older Chinese individuals.
View Article and Find Full Text PDFBMC Gastroenterol
January 2025
Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia.
Background: Viral hepatitis is the major contributor to liver cirrhosis and hepatocellular carcinoma (HCC). Studies indicated that the co-infection of hepatitis C and hepatitis B virus also prompts liver damage progression. Therefore, in the present study, the prevalence of HCV-HBV co-infection and the impact of HCV-HBV co-infection on the progression of liver damage was evaluated amongst the HCV-infected patients in Pakistan.
View Article and Find Full Text PDFBMC Anesthesiol
January 2025
Department of Anesthesiology, Air Force Medical Center, No.30 Fucheng Road, Haidian District, Beijing, 100142, China.
Background: Sufentanil is commonly used to induce general anaesthesia due to its rapid onset of action, strong analgesic effect, long-lasting effect, and stable haemodynamics; however, it often induces cough, increasing the risk of anaesthesia. This study aimed to investigate the preventive effect of low-dose esketamine on sufentanil-induced cough.
Methods: This randomised, double-blind, placebo-controlled clinical study was conducted at the Air Force Medical Center between September 2023 and May 2024.
Nat Chem Biol
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
Artificial metalloenzymes (ArMs) integrated within whole cells have emerged as promising catalysts; however, their sensitivity to metal centers remains a systematic challenge, resulting in diminished activity and turnover. Here we address this issue by inducing in cellulo liquid-liquid phase separation through a self-labeling fusion protein, HaloTag-SNAPTag. This strategy creates membraneless, isolated liquid condensates within Escherichia coli as protective compartments for the assembly of ArMs using the same fusion protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!