A prime factor in determining liquid crystalline phase formation is the overall molecular shape since molecules undergo rotational motion about the long axis. Molecular topology deals with the connectivity of atomic centers in a given molecular architecture, ultimately giving rise to the gross molecular shape. C NMR has emerged as the most important technique in establishing the molecular topology of mesogens in the liquid crystalline phase. In this work, we demonstrate the utility of C-H dipolar couplings determined from 2D separated local field NMR for finding the topology of three different mesogens in the liquid crystalline phase. The core unit of the investigated mesogens fundamentally differs, which may be categorized as rod-like, laterally substituted, and bent-core shapes. 1D and 2D C NMR measurements in the liquid crystalline phase revealed fascinating information. The C-H dipolar couplings extracted from 2D NMR are found to be sensitive to topologically variant core units. This permitted us to establish the molecular topology just by looking at the C-H dipolar couplings of the protonated carbons of the constituent phenyl rings. By considering the dipolar couplings of rod-like mesogens as a reference, the large variation in the magnitude of C-H dipolar couplings of the laterally substituted and bent-core mesogens is attributed to changes in the topology of their core units. The order parameters estimated from C-H dipolar couplings enabled visualization of the ordering array of phenyl rings of the mesogens. Interestingly large C-H dipolar couplings are observed for mesogens in which (a) laterally located phenyl ring and (b) central phenyl ring of bent-core mesogens exhibited different trends as revealed by the orientational order parameters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp00291h | DOI Listing |
Polymers (Basel)
January 2025
Rheology Department, Polymat Institute, University of the Basque Country, 20018 Donostia-San Sebastian, Euskadi, Spain.
This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.
View Article and Find Full Text PDFJ Magn Reson
January 2025
Center for Magnetic Resonance Research, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA. Electronic address:
In this work the effect of the geometric phase on time evolution of the density matrix was evaluated during nonadiabatic radiofrequency (RF) pulses with Sine amplitude modulation (AM) and Cosine frequency modulation (FM) functions of the RAFF (Relaxations Along a Fictitious Field) family, and the polarization between two energy level ½ spin system coupled by dipolar interaction was evaluated during the application of RF irradiation. The dependencies of the diagonal density matrix elements and the polarization on the rotational correlation times and the time during RF pulses were evaluated. The general treatment of the density matrix elements along with the polarization generated during RF pulses was unavailable thus far, and for the first time was here derived for the nonadiabatic case of the RAFF pulses.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir Prelog Weg 2, 8093 Zurich, Switzerland.
Relaxation-induced dipolar modulation enhancement (RIDME) is a pulse EPR experiment originally designed to determine distances between spin labels. However, RIDME has several features that make it an efficient tool in a number of "nonconventional" applications, away from the original purpose of this pulse experiment. RIDME appears to be an interesting experiment to probe longitudinal electron spin dynamics, e.
View Article and Find Full Text PDFJ Biomol NMR
January 2025
Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert- Rössle-Straße 10, 13125, Berlin, Germany.
Chemical shift assignments of large membrane proteins by solid-state NMR experiments are challenging. Recent advancements in sensitivity-enhanced pulse sequences, have made it feasible to acquire H-detected 4D spectra of these challenging protein samples within reasonable timeframes. However, obtaining unambiguous assignments remains difficult without access to side-chain chemical shifts.
View Article and Find Full Text PDFAnal Chem
January 2025
Experimental Physics III, TU Dortmund University, Dortmund 44227, Germany.
Spectral dispersion in low-field nuclear magnetic resonance (NMR) can significantly affect NMR spectral analysis, particularly when studying complex mixtures like metabolic profiling of biological samples. To address signal superposition in these spectra, we employed spectral editing with selective excitation pulses, proving it to be a suitable approach. Optimal control pulses were implemented in low-field NMR and demonstrated their capability to selectively excite and eliminate specific amino acids, such as phenylalanine and taurine, either individually or simultaneously.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!